Skip to main content

Advertisement

Log in

Human adipose-Derived Mesenchymal Stem Cells Improve Motor Functions and are Neuroprotective in the 6-Hydroxydopamine-Rat Model for Parkinson’s Disease when Cultured in Monolayer Cultures but Suppress Hippocampal Neurogenesis and Hippocampal Memory Function when Cultured in Spheroids

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Adult human adipose-derived mesenchymal stem cells (MSC) have been reported to induce neuroprotective effects in models for Parkinson´s disease (PD). However, these effects strongly depend on the most optimal application of the transplant. In the present study we compared monolayer-cultured (aMSC) and spheroid (sMSC) MSC following transplantation into the substantia nigra (SN) of 6-OHDA lesioned rats regarding effects on the local microenvironment, degeneration of dopaminergic neurons, neurogenesis in the hippocampal DG as well as motor and memory function in the 6-OHDA-rat model for PD. aMSC transplantation significantly increased tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF) levels in the SN, increased the levels of the glial fibrillary acidic protein (GFAP) and improved motor functions compared to untreated and sMSC treated animals. In contrast, sMSC grafting induced an increased local microgliosis, decreased TH levels in the SN and reduced numbers of newly generated cells in the dentate gyrus (DG) without yet affecting hippocampal learning and memory function. We conclude that the neuroprotective potential of adipose-derived MSC in the rat model of PD crucially depends on the applied cellular phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hornykiewicz, O. (1982). Imbalance of brain monoamines and clinical disorders. Progress in Brain Research, 55, 419–429.

    Article  CAS  PubMed  Google Scholar 

  2. Ehringer, H., & Hornykiewicz, O. (1960). Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Klinische Wochenschrift, 38, 1236–1239.

    Article  CAS  PubMed  Google Scholar 

  3. Ungerstedt, U. (1968). 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. European Journal of Pharmacology, 5, 107–110.

    Article  CAS  PubMed  Google Scholar 

  4. Schwarting, R. K., & Huston, J. P. (1996). The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Progress in Neurobiology, 50, 275–331.

    Article  CAS  PubMed  Google Scholar 

  5. Weintraub, D., Comella, C. L., & Horn, S. (2008). Parkinson’s disease–part 3: neuropsychiatric symptoms. The American Journal of Managed Care, 14, S59–S69.

    PubMed  Google Scholar 

  6. Chaudhuri, K. R., Healy, D. G., & Schapira, A. H. (2006). Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurology, 5, 235–245.

    Article  Google Scholar 

  7. Suzuki, K., Okada, K., Wakuda, T., et al. (2010). Destruction of dopaminergic neurons in the midbrain by 6-hydroxydopamine decreases hippocampal cell proliferation in rats: reversal by fluoxetine. PLoS ONE, 5, e9260.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Baddeley, A. (1992). Working memory. Science, 255, 556–559.

    Article  CAS  PubMed  Google Scholar 

  9. Perez, V., Marin, C., Rubio, A., Aguilar, E., Barbanoj, M., & Kulisevsky, J. (2009). Effect of the additional noradrenergic neurodegeneration to 6-OHDA-lesioned rats in levodopa-induced dyskinesias and in cognitive disturbances. Journal of Neural Transmission, 116, 1257–1266.

    Article  CAS  PubMed  Google Scholar 

  10. Zweifel, L. S., Argilli, E., Bonci, A., & Palmiter, R. D. (2008). Role of NMDA receptors in dopamine neurons for plasticity and addictive behaviors. Neuron, 59, 486–496.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Zweifel, L. S., Parker, J. G., Lobb, C. J., et al. (2009). Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proceedings of the National Academy of Sciences of the United States of America, 106, 7281–7288.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Hamilton, T. J., Wheatley, B. M., Sinclair, D. B., Bachmann, M., Larkum, M. E., & Colmers, W. F. (2010). Dopamine modulates synaptic plasticity in dendrites of rat and human dentate granule cells. Proceedings of the National Academy of Sciences of the United States of America, 107, 18185–18190.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Lennington, J. B., Pope, S., Goodheart, A. E., et al. (2011). Midbrain dopamine neurons associated with reward processing innervate the neurogenic subventricular zone. The Journal of neuroscience : the official journal of the Society for Neuroscience, 31, 13078–13087.

    Article  CAS  Google Scholar 

  14. Yahr, M. D., Duvoisin, R. C., Schear, M. J., Barrett, R. E., & Hoehn, M. M. (1969). Treatment of parkinsonism with levodopa. Archives of Neurology, 21, 343–354.

    Article  CAS  PubMed  Google Scholar 

  15. Lattanzi, W., Geloso, M.C., Saulnier, N., et al. (2011). Neurotrophic features of human adipose tissue-derived stromal cells: in vitro and in vivo studies. Journal of biomedicine & biotechnology, 2011, 468705.

  16. Kang, S. K., Shin, M. J., Jung, J. S., Kim, Y. G., & Kim, C. H. (2006). Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells and Development, 15, 583–594.

    Article  CAS  PubMed  Google Scholar 

  17. Chi, G. F., Kim, M. R., Kim, D. W., Jiang, M. H., & Son, Y. (2010). Schwann cells differentiated from spheroid-forming cells of rat subcutaneous fat tissue myelinate axons in the spinal cord injury. Experimental Neurology, 222, 304–317.

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, Y., Sun, M., Li, H., et al. (2013). Recovery of behavioral symptoms in hemi-parkinsonian rhesus monkeys through combined gene and stem cell therapy. Cytotherapy.

  19. Kim, J. M., Lee, S. T., Chu, K., et al. (2007). Systemic transplantation of human adipose stem cells attenuated cerebral inflammation and degeneration in a hemorrhagic stroke model. Brain Research, 1183, 43–50.

    Article  CAS  PubMed  Google Scholar 

  20. Kulikov, A. V., Stepanova, M. S., Stvolinsky, S. L., et al. (2008). Application of multipotent mesenchymal stromal cells from human adipose tissue for compensation of neurological deficiency induced by 3-nitropropionic Acid in rats. Bulletin of Experimental Biology and Medicine, 145, 514–519.

    Article  CAS  PubMed  Google Scholar 

  21. Anghileri, E., Marconi, S., Pignatelli, A., et al. (2008). Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells and Development, 17, 909–916.

    Article  CAS  PubMed  Google Scholar 

  22. Ashjian, P. H., Elbarbary, A. S., Edmonds, B., et al. (2003). In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plastic and Reconstructive Surgery, 111, 1922–1931.

    Article  PubMed  Google Scholar 

  23. Cardozo, A., Ielpi, M., Gomez, D., & Argibay, P. (2010). Differential expression of Shh and BMP signaling in the potential conversion of human adipose tissue stem cells into neuron-like cells in vitro. Gene Expression, 14, 307–319.

    Article  PubMed  Google Scholar 

  24. Dhar, S., Yoon, E. S., Kachgal, S., & Evans, G. R. (2007). Long-term maintenance of neuronally differentiated human adipose tissue-derived stem cells. Tissue Engineering, 13, 2625–2632.

    Article  CAS  PubMed  Google Scholar 

  25. Jang, S., Cho, H. H., Cho, Y. B., Park, J. S., & Jeong, H. S. (2010). Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biology, 11, 25.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Safford, K. M., Hicok, K. C., Safford, S. D., et al. (2002). Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochemical and Biophysical Research Communications, 294, 371–379.

    Article  CAS  PubMed  Google Scholar 

  27. Baglioni, S., Francalanci, M., Squecco, R., et al. (2009). Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 23, 3494–3505.

    Article  CAS  Google Scholar 

  28. Miller, R. H., Bai, L., Lennon, D. P., & Caplan, A. I. (2010). The potential of mesenchymal stem cells for neural repair. Discovery Medicine, 9, 236–242.

    PubMed  Google Scholar 

  29. Orlacchio, A., Bernardi, G., & Martino, S. (2010). Stem cells and neurological diseases. Discovery Medicine, 9, 546–553.

    PubMed  Google Scholar 

  30. Wei, X., Zhao, L., Zhong, J., et al. (2009). Adipose stromal cells-secreted neuroprotective media against neuronal apoptosis. Neuroscience letters, 462, 76–79.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, H. T., Liu, Z. L., Yao, X. Q., Yang, Z. J., & Xu, R. X. (2012). Neural differentiation ability of mesenchymal stromal cells from bone marrow and adipose tissue: a comparative study. Cytotherapy, 14, 1203–1214.

    Article  CAS  PubMed  Google Scholar 

  32. Reid, A. J., Sun, M., Wiberg, M., Downes, S., Terenghi, G., & Kingham, P. J. (2011). Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience, 199, 515–522.

    Article  CAS  PubMed  Google Scholar 

  33. Allen, S. J., Watson, J. J., Shoemark, D. K., Barua, N. U., & Patel, N. K. (2013). GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacology & Therapeutics, 138, 155–175.

    Article  CAS  Google Scholar 

  34. Hellmann, M. A., Panet, H., Barhum, Y., Melamed, E., & Offen, D. (2006). Increased survival and migration of engrafted mesenchymal bone marrow stem cells in 6-hydroxydopamine-lesioned rodents. Neuroscience Letters, 395, 124–128.

    Article  CAS  PubMed  Google Scholar 

  35. Bouchez, G., Sensebe, L., Vourc’h, P., et al. (2008). Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson’s disease. Neurochemistry International, 52, 1332–1342.

    Article  CAS  PubMed  Google Scholar 

  36. Venkataramana, N. K., Kumar, S. K., Balaraju, S., et al. (2010). Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Translational research: the journal of laboratory and clinical medicine, 155, 62–70.

    Article  CAS  Google Scholar 

  37. Bartosh, T. J., Ylostalo, J. H., Mohammadipoor, A., et al. (2010). Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proceedings of the National Academy of Sciences of the United States of America, 107, 13724–13729.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Cheng, N. C., Wang, S., & Young, T. H. (2012). The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials, 33, 1748–1758.

    Article  CAS  PubMed  Google Scholar 

  39. Suon, S., Yang, M., & Iacovitti, L. (2006). Adult human bone marrow stromal spheres express neuronal traits in vitro and in a rat model of Parkinson’s disease. Brain Research, 1106, 46–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Wang, W., Itaka, K., Ohba, S., et al. (2009). 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials, 30, 2705–2715.

    Article  CAS  PubMed  Google Scholar 

  41. Schwerk, A., Altschüler, J., Roch, et al. (2013). (in press). Human adipose-derived mesenchymal stem cells induce subventricular neurogenesis and transdifferentiate into endothelial cells in the 6-hydroxydopamine rat model for Parkinson’s disease. PLoS One.

  42. Gundersen, H. J. (1986). Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. Journal of Microscopy, 143, 3–45.

    Article  CAS  PubMed  Google Scholar 

  43. West, M. J., Slomianka, L., & Gundersen, H. J. (1991). Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator. The Anatomical Record, 231, 482–497.

    Article  CAS  PubMed  Google Scholar 

  44. Gundersen, H. J., Jensen, E. B., Kieu, K., & Nielsen, J. (1999). The efficiency of systematic sampling in stereology–reconsidered. Journal of Microscopy, 193, 199–211.

    Article  CAS  PubMed  Google Scholar 

  45. Winter, C., Djodari-Irani, A., Sohr, R., et al. (2009). Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: implications for brain disorders of neurodevelopmental origin such as schizophrenia. The international journal of neuropsychopharmacology/official scientific journal of the Collegium Internationale Neuropsychopharmacologicum, 12, 513–524.

    Article  CAS  Google Scholar 

  46. Bustin, S. A. (2000). Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology, 25, 169–193.

    Article  CAS  PubMed  Google Scholar 

  47. Bustin, S. A. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology, 29, 23–39.

    Article  CAS  PubMed  Google Scholar 

  48. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  50. Zavan, B., Vindigni, V., Gardin, C., et al. (2010). Neural potential of adipose stem cells. Discovery Medicine, 10, 37–43.

    PubMed  Google Scholar 

  51. Coquery, N., Blesch, A., Stroh, A., et al. (2012). Intrahippocampal transplantation of mesenchymal stromal cells promotes neuroplasticity. Cytotherapy, 14, 1041–1053.

    Article  CAS  PubMed  Google Scholar 

  52. Snyder, B. R., Chiu, A. M., Prockop, D. J., & Chan, A. W. (2010). Human multipotent stromal cells (MSCs) increase neurogenesis and decrease atrophy of the striatum in a transgenic mouse model for Huntington’s disease. PLoS ONE, 5, e9347.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Hyman, C., Hofer, M., Barde, Y. A., et al. (1991). BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature, 350, 230–232.

    Article  CAS  PubMed  Google Scholar 

  54. Levivier, M., Przedborski, S., Bencsics, C., & Kang, U. J. (1995). Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. The Journal of neuroscience : the official journal of the Society for Neuroscience, 15, 7810–7820.

    CAS  Google Scholar 

  55. Sofroniew, M. V. (2009). Molecular dissection of reactive astrogliosis and glial scar formation. Trends in Neurosciences, 32, 638–647.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Sofroniew, M. V., & Vinters, H. V. (2010). Astrocytes: biology and pathology. Acta Neuropathologica, 119, 7–35.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Fernandez-Fernandez, S., Almeida, A., & Bolanos, J. P. (2012). Antioxidant and bioenergetic coupling between neurons and astrocytes. The Biochemical Journal, 443, 3–11.

    Article  CAS  PubMed  Google Scholar 

  58. Makar, T. K., Nedergaard, M., Preuss, A., Gelbard, A. S., Perumal, A., & Scooper, A. J. (1994). Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons: evidence that astrocytes play an important role in antioxidative processes in the brain. Journal of Neurochemistry, 62, 45–53.

    Article  CAS  PubMed  Google Scholar 

  59. Calkins, M. J., Johnson, D. A., Townsend, J. A., et al. (2009). The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxidants & Redox Signaling, 11, 497–508.

    Article  CAS  Google Scholar 

  60. Jakel, R. J., Kern, J. T., Johnson, D. A., & Johnson, J. A. (2005). Induction of the protective antioxidant response element pathway by 6-hydroxydopamine in vivo and in vitro. Toxicological sciences : an official journal of the Society of Toxicology, 87, 176–186.

    Article  CAS  Google Scholar 

  61. Jakel, R. J., Townsend, J. A., Kraft, A. D., & Johnson, J. A. (2007). Nrf2-mediated protection against 6-hydroxydopamine. Brain Research, 1144, 192–201.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Burton, N. C., Kensler, T. W., & Guilarte, T. R. (2006). In vivo modulation of the Parkinsonian phenotype by Nrf2. Neurotoxicology, 27, 1094–1100.

    Article  CAS  PubMed  Google Scholar 

  63. Doetsch, F. (2003). The glial identity of neural stem cells. Nature Neuroscience, 6, 1127–1134.

    Article  CAS  PubMed  Google Scholar 

  64. Garcia, A. D., Doan, N. B., Imura, T., Bush, T. G., & Sofroniew, M. V. (2004). GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nature Neuroscience, 7, 1233–1241.

    Article  CAS  PubMed  Google Scholar 

  65. Steiner, B., Klempin, F., Wang, L., Kott, M., Kettenmann, H., & Kempermann, G. (2006). Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia, 54, 805–814.

    Article  PubMed  Google Scholar 

  66. Kronenberg, G., Reuter, K., Steiner, B., et al. (2003). Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. The Journal of Comparative Neurology, 467, 455–463.

    Article  PubMed  Google Scholar 

  67. Kempermann, G., Jessberger, S., Steiner, B., & Kronenberg, G. (2004). Milestones of neuronal development in the adult hippocampus. Trends in Neurosciences, 27, 447–452.

    Article  CAS  PubMed  Google Scholar 

  68. Hanisch, U. K. (2002). Microglia as a source and target of cytokines. Glia, 40, 140–155.

    Article  PubMed  Google Scholar 

  69. Little, A. R., & O’Callagha, J. P. (2001). Astrogliosis in the adult and developing CNS: is there a role for proinflammatory cytokines? Neurotoxicology, 22, 607–618.

    Article  CAS  PubMed  Google Scholar 

  70. Akiyama, H., & Mcgeer, P. L. (1989). Microglial response to 6-hydroxydopamine-induced substantia nigra lesions. Brain Research, 489, 247–253.

    Article  CAS  PubMed  Google Scholar 

  71. Marinova-Mutafchieva, L., Sadeghian, M., Broom, L., Davis, J. B., Medhurst, A. D., & Dexter, D. T. (2009). Relationship between microglial activation and dopaminergic neuronal loss in the substantia nigra: a time course study in a 6-hydroxydopamine model of Parkinson’s disease. Journal of Neurochemistry, 110, 966–975.

    Article  CAS  PubMed  Google Scholar 

  72. Wu, D. C., Jackson-Lewis, V., Vila, M., et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. The Journal of neuroscience : the official journal of the Society for Neuroscience, 22, 1763–71.

  73. Gao, H. M., Liu, B., Zhang, W., & Hong, J. S. (2003). Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 17, 1954–1956.

    CAS  Google Scholar 

  74. Kim, Y. S., & Oh, T. H. (2006). Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Experimental & Molecular Medicine, 38, 333–347.

    Article  CAS  Google Scholar 

  75. Baker, S. A., Baker, K. A., & Hagg, T. (2004). Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. The European Journal of Neuroscience, 20, 575–579.

    Article  PubMed  Google Scholar 

  76. Freundlieb, N., Francois, C., Tande, D., Oertel, W. H., Hirsch, E. C., & Hoglinger, G. U. (2006). Dopaminergic substantia nigra neurons project topographically organized to the subventricular zone and stimulate precursor cell proliferation in aged primates. The Journal of neuroscience: the official journal of the Society for Neuroscience, 26, 2321–2325.

    Article  CAS  Google Scholar 

  77. Winner, B., Geyer, M., Couillard-Despres, S., et al. (2006). Striatal deafferentation increases dopaminergic neurogenesis in the adult olfactory bulb. Experimental Neurology, 197, 113–121.

    Article  CAS  PubMed  Google Scholar 

  78. Borta, A., & Hoglinger, G. U. (2007). Dopamine and adult neurogenesis. Journal of Neurochemistry, 100, 587–595.

    Article  CAS  PubMed  Google Scholar 

  79. Coronas, V., Bantubungi, K., Fombonne, J., Krantic, S., Schiffmann, S. N., & Roger, M. (2004). Dopamine D3 receptor stimulation promotes the proliferation of cells derived from the post-natal subventricular zone. Journal of Neurochemistry, 91, 1292–1301.

    Article  CAS  PubMed  Google Scholar 

  80. Hoglinger, G. U., Rizk, P., Muriel, M. P., et al. (2004). Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nature Neuroscience, 7, 726–735.

    Article  PubMed  Google Scholar 

  81. Klaissle, P., Lesemann, A., Huehnchen, P., Hermann, A., Storch, A., & Steiner, B. (2012). Physical activity and environmental enrichment regulate the generation of neural precursors in the adult mouse substantia nigra in a dopamine-dependent manner. BMC Neuroscience, 13, 132.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Steiner, B., Winter, C., Hosman, K., et al. (2006). Enriched environment induces cellular plasticity in the adult substantia nigra and improves motor behavior function in the 6-OHDA rat model of Parkinson’s disease. Experimental Neurology, 199, 291–300.

    Article  PubMed  Google Scholar 

  83. Shors, T. J., Townsend, D. A., Zhao, M., Kozorovitskiy, Y., & Gould, E. (2002). Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus, 12, 578–584.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in Neurosciences, 13, 266–271.

    Article  CAS  PubMed  Google Scholar 

  85. Alexander, G. E., Delong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.

    Article  CAS  PubMed  Google Scholar 

  86. Bartosh T.J. 1, Ylostalo J. H. (2014). Preparation of anti-inflammatory mesenchymal stem/precursor cells (MSCs) through sphere formation using hanging-drop culture technique. Curr Protoc Stem Cell Biol 28:Unit 2B.6

  87. Frangioni, J. V., & Hajjar, R. J. (2004). In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation, 110(21), 3378–3383.

    Article  PubMed  Google Scholar 

  88. Coquery, N., Blesch, A., Stroh, A., Fernandez-Klett, F., Klein, J., Winter, C., & Priller, J. (2012). Intrahippocampal transplantation of mesenchymal stromal cells promotes neuroplasticity. Cytotherapy, 14(9), 1041–1053.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Renate Winter for excellent technical assistance. The study was funded by the EFRE grant of the Investitionsbank Berlin to BS.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Steiner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berg, J., Roch, M., Altschüler, J. et al. Human adipose-Derived Mesenchymal Stem Cells Improve Motor Functions and are Neuroprotective in the 6-Hydroxydopamine-Rat Model for Parkinson’s Disease when Cultured in Monolayer Cultures but Suppress Hippocampal Neurogenesis and Hippocampal Memory Function when Cultured in Spheroids. Stem Cell Rev and Rep 11, 133–149 (2015). https://doi.org/10.1007/s12015-014-9551-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9551-y

Keywords

Navigation