Skip to main content

Advertisement

Log in

Advances in Mesenchymal Stem Cell-based Strategies for Cartilage Repair and Regeneration

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Significant research efforts have been undertaken in the last decade in the development of stem cell-based therapies for cartilage repair. Among the various stem cell sources, mesenchymal stem cells (MSCs) demonstrate great promise and clinical efficacy in cartilage regeneration. With a deeper understanding of stem cell biology, new therapeutics and new bioengineering approaches have emerged and showed potential for further developments. Of note, there has been a paradigm shift in applying MSCs for tissue regeneration from the use of stem cells for transplantation to the use of stem cell-derived matrix and secretome components as therapeutic tools and agents for cartilage regeneration. In this review, we will discuss the emerging role of MSCs in cartilage regeneration and the most recent advances in development of stem cell-based therapeutics for cartilage regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hunziker, E. B. (2002). Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and Cartilage, 10(6), 432–463.

    PubMed  CAS  Google Scholar 

  2. Marcacci, M., Filardo, G., & Kon, E. (2013). Treatment of cartilage lesions: what works and why? Injury, 44(Supplement 1(0)), S11–S15.

  3. Loeser, R. F., Goldring, S. R., Scanzello, C. R., & Goldring, M. B. (2012). Osteoarthritis: a disease of the joint as an organ. Arthritis & Rheumatism, 64(6), 1697–1707.

    Google Scholar 

  4. Ge, Z., Hu, Y., Heng, B. C., Yang, Z., Ouyang, H., Lee, E. H., et al. (2006). Osteoarthritis and therapy. Arthritis Care & Research, 55(3), 493–500.

    Google Scholar 

  5. Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., & Peterson, L. (1994). Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. New England Journal of Medicine, 331(14), 889–895.

    PubMed  CAS  Google Scholar 

  6. Jiang, Y. Z., Zhang, S. F., Qi, Y. Y., Wang, L. L., & Ouyang, H. W. (2011). Cell transplantation for articular cartilage defects: principles of past, present, and future practice. Cell Transplantation, 20(5), 593–607.

    PubMed  Google Scholar 

  7. Steadman, J. R., Briggs, K. K., Rodrigo, J. J., Kocher, M. S., Gill, T. J., & Rodkey, W. G. (2003). Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 19(5), 477–484.

    Google Scholar 

  8. Revell, C. M., & Athanasiou, K. A. (2008). Success rates and immunologic responses of autogenic, allogenic, and xenogenic treatments to repair articular cartilage defects. Tissue Engineering, Part B: Reviews, 15(1), 1–15.

    Google Scholar 

  9. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    PubMed  CAS  Google Scholar 

  10. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    PubMed  CAS  Google Scholar 

  11. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    PubMed  CAS  Google Scholar 

  12. Toh, W. S., Liu, H., Heng, B. C., Rufaihah, A. J., Ye, C. P., & Cao, T. (2005). Combined effects of TGFβ1 and BMP2 in serum-free chondrogenic differentiation of mesenchymal stem cells induced hyaline-like cartilage formation. Growth Factors, 23(4), 313–321.

    PubMed  CAS  Google Scholar 

  13. Jones, B. A., & Pei, M. (2012). Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration. Tissue Engineering, Part B: Reviews, 18(4), 301–311.

    CAS  Google Scholar 

  14. Kuroda, R., Usas, A., Kubo, S., Corsi, K., Peng, H., Rose, T., et al. (2006). Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis & Rheumatism, 54(2), 433–442.

    CAS  Google Scholar 

  15. Nathan, S., De, S. D., Thambyah, A., Fen, C., Goh, J., & Lee, E. H. (2003). Cell-based therapy in the repair of osteochondral defects: a novel Use for adipose tissue. Tissue Engineering, 9(4), 733–744.

    PubMed  CAS  Google Scholar 

  16. Huang, G. T.-J., Gronthos, S., & Shi, S. (2009). Mesenchymal stem cells derived from dental tissues vs those from other sources: their biology and role in regenerative medicine. Journal of Dental Research, 88(9), 792–806.

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Nejadnik, H., Hui, J. H., Feng Choong, E. P., Tai, B.-C., & Lee, E. H. (2010). Autologous bone marrow–derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. The American Journal of Sports Medicine, 38(6), 1110–1116.

    PubMed  Google Scholar 

  18. Wakitani, S., Okabe, T., Horibe, S., Mitsuoka, T., Saito, M., Koyama, T., et al. (2011). Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. Journal of Tissue Engineering and Regenerative Medicine, 5(2), 146–150.

    PubMed  Google Scholar 

  19. Lian, Q., Lye, E., Suan Yeo, K., Khia Way Tan, E., Salto-Tellez, M., Liu, T. M., et al. (2007). Derivation of clinically compliant MSCs from CD105+, CD24− differentiated human ESCs. STEM CELLS, 25(2), 425–436.

    PubMed  CAS  Google Scholar 

  20. Toh, W. S., Lee, E. H., & Cao, T. (2011). Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine. Stem Cell Reviews, 7(3), 544–559.

    PubMed  Google Scholar 

  21. Toh, W. S., Yang, Z., Liu, H., Heng, B. C., Lee, E. H., & Cao, T. (2007). Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. STEM CELLS, 25(4), 950–960.

    PubMed  CAS  Google Scholar 

  22. Toh, W. S., Lee, E. H., Guo, X.-M., Chan, J. K. Y., Yeow, C. H., Choo, A. B., et al. (2010). Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials, 31(27), 6968–6980.

    PubMed  CAS  Google Scholar 

  23. Ko, J.-Y., Kim, K.-I., Park, S., & Im, G.-I. (2014). In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells. Biomaterials, 35(11), 3571–3581.

    PubMed  CAS  Google Scholar 

  24. Toh, W. S., Yang, Z., Heng, B. C., & Cao, T. (2007). Differentiation of human embryonic stem cells toward the chondrogenic lineage. Methods in Molecular Biology, 407, 333–349.

  25. da Silva, M. L., Fontes, A. M., Covas, D. T., & Caplan, A. I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & Growth Factor Reviews, 20(5–6), 419–427.

    Google Scholar 

  26. Baraniak, P., & McDevitt, T. (2010). Stem cell paracrine actions and tissue regeneration. Regenerative Medicine, 5, 121–143.

    PubMed  PubMed Central  Google Scholar 

  27. Foldager, C. B., Toh, W. S., Gomoll, A. H., Olsen, B. R., & Spector, M. (2014). Distribution of basement membrane molecules, laminin and collagen type IV, in normal and degenerated cartilage tissues. Cartilage, 5, 123–132.

  28. Kvist, A. J., Nyström, A., Hultenby, K., Sasaki, T., Talts, J. F., & Aspberg, A. (2008). The major basement membrane components localize to the chondrocyte pericellular matrix — a cartilage basement membrane equivalent? Matrix Biology, 27(1), 22–33.

    PubMed  CAS  Google Scholar 

  29. Toh, W. S., Foldager, C. B., Olsen, B. R., & Spector, M. (2013). Basement membrane molecule expression attendant to chondrogenesis by nucleus pulposus cells and mesenchymal stem cells. Journal of Orthopaedic Research, 31(7), 1136–1143.

    PubMed  CAS  Google Scholar 

  30. Koelling, S., Kruegel, J., Irmer, M., Path, J. R., Sadowski, B., Miro, X., et al. (2009). Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell Stem Cell, 4(4), 324–335.

    PubMed  CAS  Google Scholar 

  31. Kon, E., Gobbi, A., Filardo, G., Delcogliano, M., Zaffagnini, S., & Marcacci, M. (2009). Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: prospective nonrandomized study at 5 years. The American Journal of Sports Medicine, 37(1), 33–41.

    PubMed  Google Scholar 

  32. Scanzello, C. R., & Goldring, S. R. (2012). The role of synovitis in osteoarthritis pathogenesis. Bone, 51(2), 249–257.

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Boeuf, S., & Richter, W. (2010). Chondrogenesis of mesenchymal stem cells: role of tissue source and inducing factors. Stem Cell Research & Therapy, 1(4), 31.

    Google Scholar 

  34. Liu, T. M., Martina, M., Hutmacher, D. W., Hui, J. H. P., Lee, E. H., & Lim, B. (2007). Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. STEM CELLS, 25(3), 750–760.

    PubMed  Google Scholar 

  35. Afizah, H., Yang, Z., Hui, J. H. P., Ouyang, H.-W., & Lee, E.-H. (2007). A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Engineering, 13(4), 659–666.

    PubMed  CAS  Google Scholar 

  36. Sakaguchi, Y., Sekiya, I., Yagishita, K., & Muneta, T. (2005). Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis & Rheumatism, 52(8), 2521–2529.

    Google Scholar 

  37. Pei, M., He, F., Boyce, B. M., & Kish, V. L. (2009). Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs. Osteoarthritis and Cartilage, 17(6), 714–722.

    PubMed  CAS  Google Scholar 

  38. Li, J., & Pei, M. (2012). Cell senescence: a challenge in cartilage engineering and regeneration. Tissue Engineering, Part B: Reviews, 18(4), 270–287.

    CAS  Google Scholar 

  39. Chen, X., Song, X.-H., Yin, Z., Zou, X.-H., Wang, L.-L., Hu, H., et al. (2009). Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors. STEM CELLS, 27(6), 1276–1287.

    PubMed  CAS  Google Scholar 

  40. Jung, Y., Bauer, G., & Nolta, J. A. (2012). Concise review: induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products. STEM CELLS, 30(1), 42–47.

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Villa-Diaz, L. G., Brown, S. E., Liu, Y., Ross, A. M., Lahann, J., Parent, J. M., et al. (2012). Derivation of mesenchymal stem cells from human induced pluripotent stem cells cultured on synthetic substrates. STEM CELLS, 30(6), 1174–1181.

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Toh, W. S., Lee, E. H., Richards, M., & Cao, T. (2010). In vitro derivation of chondrogenic cells from human embryonic stem cells. Methods in Molecular Biology, 584, 317–331.

  43. Li, J., & Pei, M. (2010). Optimization of an in vitro three-dimensional microenvironment to reprogram synovium-derived stem cells for cartilage tissue engineering. Tissue Engineering Part A, 17(5–6), 703–712.

    PubMed  Google Scholar 

  44. Hennig, T., Lorenz, H., Thiel, A., Goetzke, K., Dickhut, A., Geiger, F., et al. (2007). Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFβ receptor and BMP profile and is overcome by BMP-6. Journal of Cellular Physiology, 211(3), 682–691.

    PubMed  CAS  Google Scholar 

  45. Handorf, A. M., & Li, W.-J. (2014). Induction of mesenchymal stem cell chondrogenesis through sequential administration of growth factors within specific temporal windows. Journal of Cellular Physiology, 229(2), 162–171.

    PubMed  CAS  Google Scholar 

  46. Handorf, A. M., & Li, W.-J. (2011). Fibroblast growth factor-2 primes human mesenchymal stem cells for enhanced chondrogenesis. PLoS ONE, 6(7), e22887.

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Boyette, L. B., Creasey, O. A., Guzik, L., Lozito, T., & Tuan, R. S. (2014). Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning. Stem Cells Translational Medicine, 3(2), 241–254.

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Adesida, A., Mulet-Sierra, A., & Jomha, N. (2012). Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Research & Therapy, 3(2), 9.

    CAS  Google Scholar 

  49. Munir, S., Foldager, C., Lind, M., Zachar, V., Søballe, K., & Koch, T. (2014). Hypoxia enhances chondrogenic differentiation of human adipose tissue-derived stromal cells in scaffold-free and scaffold systems. Cell and Tissue Research, 355(1), 89–102.

    PubMed  CAS  Google Scholar 

  50. Cui, J. H., Park, S. R., Park, K., Choi, B. H., & B-h, M. (2007). Preconditioning of mesenchymal stem cells with Low-intensity ultrasound for cartilage formation in vivo. Tissue Engineering, 13(2), 351–360.

    PubMed  CAS  Google Scholar 

  51. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105(1), 93–98.

    PubMed  Google Scholar 

  52. Tang, Y. L., Zhao, Q., Qin, X., Shen, L., Cheng, L., Ge, J., et al. (2005). Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in Rat model of myocardial infarction. The Annals of Thoracic Surgery, 80(1), 229–237.

    PubMed  Google Scholar 

  53. Li, Y., Chen, J., Zhang, C. L., Wang, L., Lu, D., Katakowski, M., et al. (2005). Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia, 49(3), 407–417.

    PubMed  Google Scholar 

  54. Lee, K. B. L., Hui, J. H. P., Song, I. C., Ardany, L., & Lee, E. H. (2007). Injectable mesenchymal stem cell therapy for large cartilage defects—a porcine model. STEM CELLS, 25(11), 2964–2971.

    PubMed  Google Scholar 

  55. Hwang, N. S., Varghese, S., Puleo, C., Zhang, Z., & Elisseeff, J. (2007). Morphogenetic signals from chondrocytes promote chondrogenic and osteogenic differentiation of mesenchymal stem cells. Journal of Cellular Physiology, 212(2), 281–284.

    PubMed  CAS  Google Scholar 

  56. Wu, L., Leijten, J. C. H., Georgi, N., Post, J. N., van Blitterswijk, C. A., & Karperien, M. (2011). Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Engineering Part A, 17(9–10), 1425–1436.

    PubMed  CAS  Google Scholar 

  57. Wu, L., Prins, H.-J., Helder, M. N., van Blitterswijk, C. A., & Karperien, M. (2012). Trophic effects of mesenchymal stem cells in chondrocyte Co-cultures are independent of culture conditions and cell sources. Tissue Engineering Part A, 18(15–16), 1542–1551.

    PubMed  CAS  Google Scholar 

  58. Wang, M., Rahnama, R., Cheng, T., Grotkopp, E., Jacobs, L., Limburg, S., et al. (2013). Trophic stimulation of articular chondrocytes by late-passage mesenchymal stem cells in coculture. Journal of Orthopaedic Research, 31(12), 1936–1942.

    PubMed  CAS  Google Scholar 

  59. Lee, C., Burnsed, O., Raghuram, V., Kalisvaart, J., Boyan, B., & Schwartz, Z. (2012). Adipose stem cells can secrete angiogenic factors that inhibit hyaline cartilage regeneration. Stem Cell Research & Therapy, 3(4), 35.

    CAS  Google Scholar 

  60. Xu, L., Wang, Q., Xu, F., Ye, Z., Zhou, Y., & Tan, W.-S. (2013). Mesenchymal stem cells downregulate articular chondrocyte differentiation in noncontact coculture systems: implications in cartilage tissue regeneration. Stem Cells and Development, 22(11), 1657–1669.

    PubMed  CAS  Google Scholar 

  61. Pei, M., Li, J., Zhang, Y., Liu, G., Wei, L., & Zhang, Y. (2014). Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells. Cell and Tissue Research, 356(2), 391–403.

    PubMed  CAS  Google Scholar 

  62. Jeong, S. Y., Kim, D. H., Ha, J., Jin, H. J., Kwon, S.-J., Chang, J. W., et al. (2013). Thrombospondin-2 secreted by human umbilical cord blood-derived mesenchymal stem cells promotes chondrogenic differentiation. STEM CELLS, 31(10), 2136–2148.

    PubMed  CAS  Google Scholar 

  63. Sze, S. K., de Kleijn, D. P. V., Lai, R. C., Khia Way Tan, E., Zhao, H., Yeo, K. S., et al. (2007). Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Molecular & Cellular Proteomics, 6(10), 1680–1689.

    CAS  Google Scholar 

  64. Cho, G.-W., Kang, B. Y., Kim, K.-S., & Kim, S. H. (2012). Effects of valproic acid on the expression of trophic factors in human bone marrow mesenchymal stromal cells. Neuroscience Letters, 526(2), 100–105.

    PubMed  CAS  Google Scholar 

  65. Liu, G.-S., Peshavariya, H. M., Higuchi, M., Chan, E. C., Dusting, G. J., & Jiang, F. (2013). Pharmacological priming of adipose-derived stem cells for paracrine VEGF production with deferoxamine. Journal of Tissue Engineering and Regenerative Medicine. doi:10.1002/term.1796.

    Google Scholar 

  66. Lee, M. J., Kim, J., Kim, M. Y., Bae, Y.-S., Ryu, S. H., Lee, T. G., et al. (2010). Proteomic analysis of tumor necrosis factor-α-induced secretome of human adipose tissue-derived mesenchymal stem cells. Journal of Proteome Research, 9(4), 1754–1762.

    PubMed  CAS  Google Scholar 

  67. Khan, M., Akhtar, S., Mohsin, S., Khan, N. S., & Riazuddin, S. (2010). Growth factor preconditioning increases the function of diabetes-impaired mesenchymal stem cells. Stem Cells and Development, 20(1), 67–75.

    PubMed  Google Scholar 

  68. Bartosh, T. J., Ylöstalo, J. H., Mohammadipoor, A., Bazhanov, N., Coble, K., Claypool, K., et al. (2010). Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proceedings of the National Academy of Sciences, 107(31), 13724–13729.

    CAS  Google Scholar 

  69. YlÖstalo, J. H., Bartosh, T. J., Coble, K., & Prockop, D. J. (2012). Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype. STEM CELLS, 30(10), 2283–2296.

    PubMed  PubMed Central  Google Scholar 

  70. Bara, J. J., McCarthy, H. E., Humphrey, E., Johnson, W. E. B., & Roberts, S. (2013). Bone marrow-derived mesenchymal stem cells become antiangiogenic when chondrogenically or osteogenically differentiated: implications for bone and cartilage tissue engineering. Tissue Engineering Part A, 20(1–2), 147–159.

    PubMed  Google Scholar 

  71. Kubo, S., Cooper, G., Matsumoto, T., Phillippi, J., Corsi, K., Usas, A., et al. (2009). Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis and Rheumatism, 60, 155–165.

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Petrie Aronin, C. E., & Tuan, R. S. (2010). Therapeutic potential of the immunomodulatory activities of adult mesenchymal stem cells. Birth Defects Research Part C: Embryo Today: Reviews, 90(1), 67–74.

    CAS  Google Scholar 

  73. Tetta, C., Bruno, S., Fonsato, V., Deregibus, M. C., & Camussi, G. (2011). The role of microvesicles in tissue repair. Organogenesis, 7(2), 105–115.

    PubMed  PubMed Central  Google Scholar 

  74. Yeo, R. W. Y., Lai, R. C., Zhang, B., Tan, S. S., Yin, Y., Teh, B. J., et al. (2013). Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Advanced Drug Delivery Reviews, 65(3), 336–341.

    PubMed  CAS  Google Scholar 

  75. Goldring, M., Tsuchimochi, K., & Ijiri, K. (2006). The control of chondrogenesis. Journal of Cellular Biochemistry, 97, 33–44.

    PubMed  CAS  Google Scholar 

  76. Huang, Q., Goh, J. C. H., Hutmacher, D. W., & Lee, E. H. (2002). In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor β1 and the potential for in situ chondrogenesis. Tissue Engineering, 8(3), 469–482.

    PubMed  CAS  Google Scholar 

  77. Gaissmaier, C., Koh, J. L., & Weise, K. (2008). Growth and differentiation factors for cartilage healing and repair. Injury, 39(1), 88–96.

    Google Scholar 

  78. Schmidt, M. B., Chen, E. H., & Lynch, S. E. (2006). A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthritis and Cartilage, 14(5), 403–412.

    PubMed  CAS  Google Scholar 

  79. Zhang, W., Chen, J., Tao, J., Jiang, Y., Hu, C., Huang, L., et al. (2013). The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials, 34(3), 713–723.

    PubMed  CAS  Google Scholar 

  80. Liu, H., Lu, K., MacAry, P. A., Wong, K. L., Heng, A., Cao, T., et al. (2012). Soluble molecules are key in maintaining the immunomodulatory activity of murine mesenchymal stromal cells. Journal of Cell Science, 125(1), 200–208.

    PubMed  CAS  Google Scholar 

  81. Manferdini, C., Maumus, M., Gabusi, E., Piacentini, A., Filardo, G., Peyrafitte, J.-A., et al. (2013). Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis & Rheumatism, 65(5), 1271–1281.

    CAS  Google Scholar 

  82. Patra, D., & Sandell, L. J. (2012). Antiangiogenic and anticancer molecules in cartilage. Expert Reviews in Molecular Medicine, 14, e10.

    PubMed  CAS  Google Scholar 

  83. Fu, X., Toh, W. S., Liu, H., Lu, K., Li, M., & Cao, T. (2011). Establishment of clinically compliant human embryonic stem cells in an autologous feeder-free system. Tissue Engineering. Part C, Methods, 17(9), 927–937.

    PubMed  Google Scholar 

  84. Peng, Y., Bocker, M. T., Holm, J., Toh, W. S., Hughes, C. S., Kidwai, F., et al. (2012). Human fibroblast matrices bio-assembled under macromolecular crowding support stable propagation of human embryonic stem cells. Journal of Tissue Engineering and Regenerative Medicine, 6(10), e74–e86.

    PubMed  CAS  Google Scholar 

  85. Sun, Y., Li, W., Lu, Z., Chen, R., Ling, J., Ran, Q., et al. (2011). Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix. The FASEB Journal, 25(5), 1474–1485.

    CAS  PubMed Central  Google Scholar 

  86. Pei, M., He, F., Li, J., Tidwell, J. E., Jones, A. C., & McDonough, E. B. (2012). Repair of large animal partial-thickness cartilage defects through intraarticular injection of matrix-rejuvenated synovium-derived stem cells. Tissue Engineering Part A, 19(9–10), 1144–1154.

    Google Scholar 

  87. He, F., Chen, X., & Pei, M. (2009). Reconstruction of an in vitro tissue-specific microenvironment to rejuvenate synovium-derived stem cells for cartilage tissue engineering. Tissue Engineering Part A, 15(12), 3809–3821.

    PubMed  CAS  Google Scholar 

  88. Pei, M., & He, F. (2012). Extracellular matrix deposited by synovium-derived stem cells delays replicative senescent chondrocyte dedifferentiation and enhances redifferentiation. Journal of Cellular Physiology, 227(5), 2163–2174.

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Pei, M., Shoukry, M., Li, J., Daffner, S. D., France, J. C., & Emery, S. E. (2012). Modulation of in vitro microenvironment facilitates synovium-derived stem cell-based nucleus pulposus tissue regeneration. Spine, 37(18), 1538–1547.

    PubMed  Google Scholar 

  90. He, F. P., & Pei, M. (2012). Rejuvenation of nucleus pulposus cells using extracellular matrix deposited by synovium-derived stem cells. Spine, 37(6), 459–469.

    PubMed  Google Scholar 

  91. Pei, M., Zhang, Y., Li, J., & Chen, D. (2012). Antioxidation of decellularized stem cell matrix promotes human synovium-derived stem cell-based chondrogenesis. Stem Cells and Development, 22(6), 889–900.

    PubMed  PubMed Central  Google Scholar 

  92. Pei, M., He, F., & Kish, V. L. (2011). Expansion on extracellular matrix deposited by human bone marrow stromal cells facilitates stem cell proliferation and tissue-specific lineage potential. Tissue Engineering Part A, 17(23–24), 3067–3076.

    PubMed  CAS  PubMed Central  Google Scholar 

  93. Gilbert, T. W., Sellaro, T. L., & Badylak, S. F. (2006). Decellularization of tissues and organs. Biomaterials, 27(19), 3675–3683.

    PubMed  CAS  Google Scholar 

  94. Chen, C., Loe, F., Blocki, A., Peng, Y., & Raghunath, M. (2011). Applying macromolecular crowding to enhance extracellular matrix deposition and its remodeling in vitro for tissue engineering and cell-based therapies. Advanced Drug Delivery Reviews, 63(4–5), 277–290.

    PubMed  CAS  Google Scholar 

  95. Lindner, U., Kramer, J., Behrends, J., Driller, B., Wendler, N.-O., Boehrnsen, F., et al. (2010). Improved proliferation and differentiation capacity of human mesenchymal stromal cells cultured with basement-membrane extracellular matrix proteins. Cytotherapy, 12(8), 992–1005.

    PubMed  CAS  Google Scholar 

  96. Helledie, T., Dombrowski, C., Rai, B., Lim, Z. X. H., Hin, I. L. H., Rider, D. A., et al. (2011). Heparan sulfate enhances the self-renewal and therapeutic potential of mesenchymal stem cells from human adult bone marrow. Stem Cells and Development, 21(11), 1897–1910.

    PubMed Central  Google Scholar 

  97. Li, J., Hansen, K. C., Zhang, Y., Dong, C., Dinu, C. Z., Dzieciatkowska, M., et al. (2014). Rejuvenation of chondrogenic potential in a young stem cell microenvironment. Biomaterials, 35(2), 642–653.

    PubMed  CAS  Google Scholar 

  98. Toh, W. S., & Loh, X. J. (2014). Advances in hydrogel delivery systems for tissue regeneration. Materials Science and Engineering: C. doi:10.1016/j.msec.2014.04.026.

    Google Scholar 

  99. Seib, F. P., Prewitz, M., Werner, C., & Bornhäuser, M. (2009). Matrix elasticity regulates the secretory profile of human bone marrow-derived multipotent mesenchymal stromal cells (MSCs). Biochemical and Biophysical Research Communications, 389(4), 663–667.

    PubMed  CAS  Google Scholar 

  100. Toh, W. S., Spector, M., Lee, E. H., & Cao, T. (2011). Biomaterial-mediated delivery of microenvironmental cues for repair and regeneration of articular cartilage. Molecular Pharmaceutics, 8(4), 994–1001.

    PubMed  CAS  Google Scholar 

  101. He, J., Genetos, D. C., & Leach, J. K. (2009). Osteogenesis and trophic factor secretion are influenced by the composition of hydroxyapatite/poly(lactide-Co-glycolide) composite scaffolds. Tissue Engineering Part A, 16(1), 127–137.

    PubMed Central  Google Scholar 

  102. Bosnakovski, D., Mizuno, M., Kim, G., Takagi, S., Okumura, M., & Fujinaga, T. (2006). Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnology and Bioengineering, 93(6), 1152–1163.

    PubMed  CAS  Google Scholar 

  103. Toh, W. S., Guo, X.-M., Choo, A. B., Lu, K., Lee, E. H., & Cao, T. (2009). Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro. Journal of Cellular and Molecular Medicine, 13(9b), 3570–3590.

    PubMed  Google Scholar 

  104. Toh, W. S., Lim, T. C., Kurisawa, M., & Spector, M. (2012). Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials, 33(15), 3835–3845.

    PubMed  CAS  Google Scholar 

  105. Wu, S.-C., Chang, J.-K., Wang, C.-K., Wang, G.-J., & Ho, M.-L. (2010). Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment. Biomaterials, 31(4), 631–640.

    PubMed  Google Scholar 

  106. Jose, S., Hughbanks, M. L., Binder, B. Y. K., Ingavle, G. C., & Leach, J. K. (2014). Enhanced trophic factor secretion by mesenchymal stem/stromal cells with Glycine-Histidine-Lysine (GHK)-modified alginate hydrogels. Acta Biomaterialia, 10(5), 1955–1964.

    PubMed  CAS  Google Scholar 

  107. Silva, N. A., Moreira, J., Ribeiro-Samy, S., Gomes, E. D., Tam, R. Y., Shoichet, M. S., et al. (2013). Modulation of bone marrow mesenchymal stem cell secretome by ECM-like hydrogels. Biochimie, 95(12), 2314–2319.

    PubMed  CAS  Google Scholar 

  108. Schwarz, S., Koerber, L., Elsaesser, A. F., Goldberg-Bockhorn, E., Seitz, A. M., Dürselen, L., et al. (2012). Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Engineering Part A, 18(21–22), 2195–2209.

    PubMed  CAS  Google Scholar 

  109. Lu, Q., Li, M., Zou, Y., & Cao, T. (2014). Delivery of basic fibroblast growth factors from heparinized decellularized adipose tissue stimulates potent de novo adipogenesis. Journal of Controlled Release, 174, 43–50.

    PubMed  CAS  Google Scholar 

  110. Cheung, H. K., Han, T. T. Y., Marecak, D. M., Watkins, J. F., Amsden, B. G., & Flynn, L. E. (2014). Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells. Biomaterials, 35(6), 1914–1923.

    PubMed  CAS  Google Scholar 

  111. Sawkins, M. J., Bowen, W., Dhadda, P., Markides, H., Sidney, L. E., Taylor, A. J., et al. (2013). Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomaterialia, 9(8), 7865–7873.

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Adam Young, D., Bajaj, V., & Christman, K. L. (2014). Decellularized adipose matrix hydrogels stimulate in vivo neovascularization and adipose formation. Journal of Biomedical Materials Research, Part A, 102(6), 1641–1651.

    CAS  Google Scholar 

  113. Li, W.-J., Tuli, R., Huang, X., Laquerriere, P., & Tuan, R. S. (2005). Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials, 26(25), 5158–5166.

    PubMed  CAS  Google Scholar 

  114. Garrigues, N. W., Little, D., Sanchez-Adams, J., Ruch, D. S., & Guilak, F. (2014). Electrospun cartilage-derived matrix scaffolds for cartilage tissue engineering. Journal of Biomedical Materials Research, Part A. doi:10.1002/jbm.a.35068.

    Google Scholar 

  115. Loh, X. J., Peh, P., Liao, S., Sng, C., & Li, J. (2010). Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. Journal of Controlled Release, 143(2), 175–182.

    PubMed  CAS  Google Scholar 

  116. Lim, T. C., Rokkappanavar, S., Toh, W. S., Wang, L.-S., Kurisawa, M., & Spector, M. (2013). Chemotactic recruitment of adult neural progenitor cells into multifunctional hydrogels providing sustained SDF-1α release and compatible structural support. The FASEB Journal, 27(3), 1023–1033.

    CAS  Google Scholar 

  117. Diao, H. J., Yeung, C. W., Yan, C. H., Chan, G. C. F., & Chan, B. P. (2013). Bidirectional and mutually beneficial interactions between human mesenchymal stem cells and osteoarthritic chondrocytes in micromass co-cultures. Regenerative Medicine, 8(3), 257–269.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grants (R221000068720 and R221000070733) from National University of Singapore, National University Healthcare System, and Ministry of Education, Singapore.

Disclosure

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Seong Toh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toh, W.S., Foldager, C.B., Pei, M. et al. Advances in Mesenchymal Stem Cell-based Strategies for Cartilage Repair and Regeneration. Stem Cell Rev and Rep 10, 686–696 (2014). https://doi.org/10.1007/s12015-014-9526-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9526-z

Keywords

Navigation