Skip to main content
Log in

The Generation of Definitive Endoderm from Human Embryonic Stem Cells is Initially Independent from Activin A but Requires Canonical Wnt-Signaling

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The activation of the TGF-beta pathway by activin A directs ES cells into the definitive endoderm germ layer. However, there is evidence that activin A/TGF-beta is not solely responsible for differentiation into definitive endoderm. GSK3beta inhibition has recently been shown to generate definitive endoderm-like cells from human ES cells via activation of the canonical Wnt-pathway. The GSK3beta inhibitor CHIR-99021 has been reported to generate mesoderm from human iPS cells. Thus, the specific role of the GSK3beta inhibitor CHIR-99021 was analyzed during the differentiation of human ES cells and compared against a classic endoderm differentiation protocol. At high concentrations of CHIR-99021, the cells were directed towards mesodermal cell fates, while low concentrations permitted mesodermal and endodermal differentiation. Finally, the analyses revealed that GSK3beta inhibition rapidly directed human ES cells into a primitive streak-like cell type independently from the TGF-beta pathway with mesoderm and endoderm differentiation potential. Addition of low activin A concentrations effectively differentiated these primitive streak-like cells into definitive endoderm. Thus, the in vitro differentiation of human ES cells into definitive endoderm is initially independent from the activin A/TGF-beta pathway but requires high canonical Wnt-signaling activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Naujok, O., & Lenzen, S. (2012). Pluripotente Stammzellen zur Zellersatztherapie des Diabetes mellitus. Deutsche Medizinische Wochenschrift, 137, 1062–1066.

    Article  CAS  PubMed  Google Scholar 

  2. Naujok, O., Burns, C., Jones, P. M., & Lenzen, S. (2011). Insulin-producing surrogate beta-cells from embryonic stem cells: are we there yet? Molecular Therapy, 19, 1759–1768.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kubo, A., Shinozaki, K., Shannon, J. M., Kouskoff, V., Kennedy, M., Woo, S., et al. (2004). Development of definitive endoderm from embryonic stem cells in culture. Development, 131, 1651–1662.

    Article  CAS  PubMed  Google Scholar 

  4. D’Amour, K. A., Agulnick, A. D., Eliazer, S., Kelly, O. G., Kroon, E., & Baetge, E. E. (2005). Efficient differentiation of human embryonic stem cells to definitive endoderm. Nature Biotechnology, 23, 1534–1541.

    Article  PubMed  Google Scholar 

  5. Rodaway, A., & Patient, R. (2001). Mesendoderm. an ancient germ layer? Cell, 105, 169–172.

    Article  CAS  PubMed  Google Scholar 

  6. Technau, U., & Scholz, C. B. (2003). Origin and evolution of endoderm and mesoderm. International Journal of Developmental Biology, 47, 531–539.

    PubMed  Google Scholar 

  7. Hanna, J. H., Saha, K., & Jaenisch, R. (2010). Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell, 143, 508–525.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Mfopou, J. K., Chen, B., Mateizel, I., Sermon, K., & Bouwens, L. (2010). Noggin, retinoids, and fibroblast growth factor regulate hepatic or pancreatic fate of human embryonic stem cells. Gastroenterology, 138, 2233–2245.

    Article  CAS  PubMed  Google Scholar 

  9. Kroon, E., Martinson, L. A., Kadoya, K., Bang, A. G., Kelly, O. G., Eliazer, S., et al. (2008). Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nature Biotechnology, 26, 443–452.

    Article  CAS  PubMed  Google Scholar 

  10. D’Amour, K. A., Bang, A. G., Eliazer, S., Kelly, O. G., Agulnick, A. D., Smart, N. G., et al. (2006). Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nature Biotechnology, 24, 1392–1401.

    Article  PubMed  Google Scholar 

  11. Cho, C. H., Hannan, N. R., Docherty, F. M., Docherty, H. M., Joao Lima, M., Trotter, M. W., et al. (2012). Inhibition of activin/nodal signalling is necessary for pancreatic differentiation of human pluripotent stem cells. Diabetologia, 55, 3284–3295.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Naujok, O., & Lenzen, S. (2012). A critical re-evaluation of CD24-positivity of human embryonic stem cells differentiated into pancreatic progenitors. Stem Cell Reviews and Reports, 8, 779–791.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu, S., Wurdak, H., Wang, J., Lyssiotis, C. A., Peters, E. C., Cho, C. Y., et al. (2009). A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell, 4, 416–426.

    Article  CAS  PubMed  Google Scholar 

  14. Holland, J. D., Klaus, A., Garratt, A. N., & Birchmeier, W. (2013). Wnt signaling in stem and cancer stem cells. Current Opinion in Cell Biology, 25, 254–264.

    Article  CAS  PubMed  Google Scholar 

  15. ten Berge, D., Koole, W., Fuerer, C., Fish, M., Eroglu, E., & Nusse, R. (2008). Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell, 3, 508–518.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Barrow, J. R., Howell, W. D., Rule, M., Hayashi, S., Thomas, K. R., Capecchi, M. R., et al. (2007). Wnt3 signaling in the epiblast is required for proper orientation of the anteroposterior axis. Developmental Biology, 312, 312–320.

    Article  CAS  PubMed  Google Scholar 

  17. Kirby, L. A., Schott, J. T., Noble, B. L., Mendez, D. C., Caseley, P. S., Peterson, S. C., et al. (2012). Glycogen synthase kinase 3 (GSK3) inhibitor, SB-216763, promotes pluripotency in mouse embryonic stem cells. PLoS ONE, 7, e39329.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Price, F. D., Yin, H., Jones, A., van Ijcken, W., Grosveld, F., & Rudnicki, M. A. (2012). Canonical Wnt signaling induces a primitive endoderm metastable state in mouse embryonic stem cells. Stem Cells, 31, 752–764.

    Article  Google Scholar 

  19. Nakanishi, M., Kurisaki, A., Hayashi, Y., Warashina, M., Ishiura, S., Kusuda-Furue, M., et al. (2009). Directed induction of anterior and posterior primitive streak by Wnt from embryonic stem cells cultured in a chemically defined serum-free medium. FASEB Journal, 23, 114–122.

    Article  CAS  PubMed  Google Scholar 

  20. Davidson, K. C., Adams, A. M., Goodson, J. M., McDonald, C. E., Potter, J. C., Berndt, J. D., et al. (2012). Wnt/beta-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4. Proceedings of the National Academy of Sciences of the United States of America, 109, 4485–4490.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Sumi, T., Tsuneyoshi, N., Nakatsuji, N., & Suemori, H. (2008). Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Development, 135, 2969–2979.

    Article  CAS  PubMed  Google Scholar 

  22. Brons, I. G., Smithers, L. E., Trotter, M. W., Rugg-Gunn, P., Sun, B., de Sousa, C., Lopes, S. M., et al. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 448, 191–195.

    Article  CAS  PubMed  Google Scholar 

  23. Bone, H. K., Nelson, A. S., Goldring, C. E., Tosh, D., & Welham, M. J. (2011). A novel chemically directed route for the generation of definitive endoderm from human embryonic stem cells based on inhibition of GSK-3. Journal of Cell Science, 124, 1992–2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Doble, B. W., & Woodgett, J. R. (2003). GSK-3: tricks of the trade for a multi-tasking kinase. Journal of Cell Science, 116, 1175–1186.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ying, Q. L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., et al. (2008). The ground state of embryonic stem cell self-renewal. Nature, 453, 519–523.

    Article  CAS  PubMed  Google Scholar 

  26. Lian, X., Hsiao, C., Wilson, G., Zhu, K., Hazeltine, L. B., Azarin, S. M., et al. (2012). Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America, 109, 1848–1857.

    Google Scholar 

  27. Osafune, K., Caron, L., Borowiak, M., Martinez, R. J., Fitz-Gerald, C. S., Sato, Y., et al. (2008). Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotechnology, 26, 313–315.

    Article  CAS  PubMed  Google Scholar 

  28. Kunisada, Y., Tsubooka-Yamazoe, N., Shoji, M., & Hosoya, M. (2012). Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Research, 8, 274–284.

    Article  CAS  PubMed  Google Scholar 

  29. Pereira, L. A., Wong, M. S., Mossman, A. K., Sourris, K., Janes, M. E., Knezevic, K., et al. (2012). Pdgfralpha and Flk1 are direct target genes of Mixl1 in differentiating embryonic stem cells. Stem Cell Research, 8, 165–179.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, P., Rodriguez, R. T., Wang, J., Ghodasara, A., & Kim, S. K. (2011). Targeting SOX17 in human embryonic stem cells creates unique strategies for isolating and analyzing developing endoderm. Cell Stem Cell, 8, 335–346.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Jiang, W., Wang, J., & Zhang, Y. (2013). Histone H3K27me3 demethylases KDM6A and KDM6B modulate definitive endoderm differentiation from human ESCs by regulating WNT signaling pathway. Cell Research, 23, 122–130.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Nostro, M. C., Sarangi, F., Ogawa, S., Holtzinger, A., Corneo, B., Li, X., et al. (2011). Stage-specific signaling through TGFbeta family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development, 138, 861–871.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Jiang, W., Zhang, D., Bursac, N., & Zhang, Y. (2013). WNT3 Is a Biomarker Capable of Predicting the Definitive Endoderm Differentiation Potential of hESCs. Stem Cell Reports, 1, 46–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Rezania, A., Bruin, J. E., Riedel, M. J., Mojibian, M., Asadi, A., Xu, J., et al. (2012). Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes, 61, 2016–2029.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Bruin, J. E., Rezania, A., Xu, J., Narayan, K., Fox, J. K., O’Neil, J. J., et al. (2013). Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. Diabetologia, 56, 1987–1998.

    Article  PubMed  Google Scholar 

  36. Pereira, L. A., Wong, M. S., Mei Lim, S., Stanley, E. G., & Elefanty, A. G. (2012). The Mix family of homeobox genes-key regulators of mesendoderm formation during vertebrate development. Developmental Biology, 367, 163–177.

    Article  CAS  PubMed  Google Scholar 

  37. Bernardo, A. S., Faial, T., Gardner, L., Niakan, K. K., Ortmann, D., Senner, C. E., et al. (2011). BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell, 9, 144–155.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Tan, J. Y., Sriram, G., Rufaihah, A. J., Neoh, K. G., & Cao, T. (2013). Efficient derivation of lateral plate and paraxial mesoderm subtypes from human embryonic stem cells through GSKi-mediated differentiation. Stem Cells and Development, 22, 1893–1906.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Arnold, S. J., Stappert, J., Bauer, A., Kispert, A., Herrmann, B. G., & Kemler, R. (2000). Brachyury is a target gene of the Wnt/beta-catenin signaling pathway. Mechanisms of Development, 91, 249–258.

    Article  CAS  PubMed  Google Scholar 

  40. McLean, A. B., D’Amour, K. A., Jones, K. L., Krishnamoorthy, M., Kulik, M. J., Reynolds, D. M., et al. (2007). Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells, 25, 29–38.

    Article  CAS  PubMed  Google Scholar 

  41. Gadue, P., Huber, T. L., Paddison, P. J., & Keller, G. M. (2006). Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 16806–16811.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Katoh, M., & Katoh, M. (2010). Integrative genomic analyses of CXCR4: transcriptional regulation of CXCR4 based on TGFbeta, Nodal, Activin signaling and POU5F1, FOXA2, FOXC2, FOXH1, SOX17, and GFI1 transcription factors. International Journal of Oncology, 36, 415–420.

    CAS  PubMed  Google Scholar 

  43. Evans, A. L., Faial, T., Gilchrist, M. J., Down, T., Vallier, L., Pedersen, R. A., et al. (2012). Genomic targets of Brachyury (T) in differentiating mouse embryonic stem cells. PLoS ONE, 7, e33346.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Pereira, L. A., Wong, M. S., Lim, S. M., Sides, A., Stanley, E. G., & Elefanty, A. G. (2011). Brachyury and related Tbx proteins interact with the Mixl1 homeodomain protein and negatively regulate Mixl1 transcriptional activity. PLoS ONE, 6, e28394.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Zhang, H., Fraser, S. T., Papazoglu, C., Hoatlin, M. E., & Baron, M. H. (2009). Transcriptional activation by the Mixl1 homeodomain protein in differentiating mouse embryonic stem cells. Stem Cells, 27, 2884–2895.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Boucher, D. M., Schaffer, M., Deissler, K., Moore, C. A., Gold, J. D., & Burdsal, C. A. (2000). goosecoid expression represses Brachyury in embryonic stem cells and affects craniofacial development in chimeric mice. International Journal of Developmental Biology, 44, 279–288.

    CAS  PubMed  Google Scholar 

  47. Izzi, L., Silvestri, C., von Both, I., Labbe, E., Zakin, L., Wrana, J. L., et al. (2007). Foxh1 recruits Gsc to negatively regulate Mixl1 expression during early mouse development. The EMBO Journal, 26, 3132–3143.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Cowan, C. A., Klimanskaya, I., McMahon, J., Atienza, J., Witmyer, J., Zucker, J. P., et al. (2004). Derivation of Embryonic Stem-Cell Lines from Human Blastocysts. New England Journal of Medicine, 350, 1353–1356.

    Article  CAS  PubMed  Google Scholar 

  49. Borowiak, M., Maehr, R., Chen, S., Chen, A. E., Tang, W., Fox, J. L., et al. (2009). Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell, 4, 348–358.

    Article  CAS  PubMed  Google Scholar 

  50. Diekmann, U., Naujok, O., Blasczyk, R., & Müller, T. (2013). Embryonic stem cells of the non-human primate Callithrix jacchus can be differentiated into definitive endoderm by Activin-A but not IDE-1/2. Journal of Tissue Engineering and Regenerative Medicine. Chichester, West Sussex, UK: John Wiley & Sons.

  51. Kramer, T., Schmidt, B., & Lo Monte, F. (2012). Small-Molecule Inhibitors of GSK-3: Structural Insights and Their Application to Alzheimer’s Disease Models. International Journal of Alzheimer's Disease, 2012, 381029.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Deutsche Forschungsgemeinschaft (German Research Foundation) within the framework of the Cluster of Excellence REBIRTH. The skillful technical assistance of J. Kresse and R. Strauss is gratefully acknowledged. We would like to acknowledge the assistance of the Cell Sorting Facility of Hannover Medical School supported by the Braukmann-Wittenberg-Herz-Stiftung and the Deutsche Forschungsgemeinschaft.

Conflict of Interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ortwin Naujok.

Additional information

This work has been supported by the German Research Foundation within the framework of the Cluster of Excellence REBIRTH.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Gene expression profile of primitive gut tube, foregut, and hindgut markers. Human ES cells were differentiated either randomly, with the combination of wnt3a and activin A (Wnt3a/ActA) for 3 days and a subsequent 3 day treatment with KGF or with 10 μM CHIR-99021 (Chir) for 6 days. As a comparison, the relative gene expression of undifferentiated human ES cells is depicted (d0). Gene expressions of marker genes were measured with TaqMan® array cards and calibrated normalized quantitates (CNRQ) were then calculated after normalization to four stably expressed housekeeping genes. a Relative gene expression of the primitive gut tube markers HNF1B and HNF1A, b of marker genes of the foregut, namely FOXA1, HHEX and HNF6, and c of the hindgut genes CDX1, CDX2, and CDX4. For a better comparison HNF1B, HNF4A, and CDX1/2 are presented with a two-segmented y-axis (GIF 60 kb)

High Resolution (TIFF 159 kb)

Fig. S2

CHIR-99021 treatment efficiently translocates active beta-catenin to the nucleus a-b Immunfluorescence staining of active beta-catenin in undifferentiated human ES cells, in cells after treatment with 25 ng/ml wnt3a, and in cells after treatment with 5 μM CHIR-99021 for 24 h. Depicted are a low magnification image a and a high magnification image b revealing the subcellular location of beta catenin (scale bars 20 and 100 μM, respectively). c Mean grey value of the staining of nuclear located beta catenin. Values are means ± SEM of 20 cells of two independent experiments. Data analysis was performed with Xcellence RT (Olympus, Hamburg, Germany) (GIF 232 kb)

High Resolution (TIFF 3344 kb)

Fig. S3

FACS sorting of two cell populations after differentiation with Wnt3a/Act A. a Representative flow cytometry dot plot of human ES cells differentiated for three days with wnt3a/activin A and double-stained for CD49e (FITC) and CXCR4 (PE). Regions for the cell sorting are indicated and qRT-PCR analysis of T, MIXL1, GSC, SOX17, and FOXA2 of the sorted cells are depicted in b. Calibrated normalized quantitates (CNRQ) were calculated after normalization to three stably expressed housekeeping genes. Values are means ± SD of a triplicate measurement (GIF 37 kb)

High Resolution (TIFF 484 kb)

Fig. S4

Flow cytometry and qRT-PCR analysis of cell lineage selection after treatment of human ES cells with CHIR-99021, activin A and BMP4. a Flow cytometry dot plots of Hues8 cells double-stained for CD49e (FITC) and CXCR4 (PE) after a treatment with 5 μM CHIR-99021 for one day and either 100 ng/ml activin A or 25 ng/ml BMP4 for 2 days. The differentiated cells were stained initially (d0) at day two (24 h) and day three (48 h) of treatment/differentiation with activin A or BMP4. Of note is that BMP4-treated cells did not acquire CXCR4-positivity. Numbers in each quadrant denote the cell percentages of this particular experiment. b Relative gene expression of the pluripotency marker POU5F1 (OCT3/4), the primitive streak marker genes T and MIXL1, the definitive endoderm markers SOX17, FOXA2, and GSC, and the mesoderm markers genes FLK1, PDGFRa and MEOX1. Values are calibrated normalized relative quantities (CNRQ) after normalization to three stably expressed housekeeping genes and scaling to undifferentiated ES cells. Values are means ± SD of a triplicate measurement (GIF 100 kb)

High Resolution (TIFF 569 kb)

Fig. S5

Differentiation of Hues4 human ES cells with wnt3a, activin A and CHIR-99021 a Flow cytometry dot plots of Hues4 double-stained for CD49e (FITC) and CXCR4 (PE) after a 3 day treatment with Wnt3a/ActA and Chir+ActA. Numbers in each quadrant denote the cell percentages of the particular experiment. b Relative gene expression of the primitive streak marker genes T and MIXL1 and of the definitive endoderm related markers SOX17, FOXA2 and GSC. Values are calibrated normalized relative quantities (CNRQ) after normalization to three stably expressed housekeeping genes and scaling to undifferentiated ES cells. Values are means ± SD of two independent experiments (GIF 86 kb)

High Resolution (TIFF 445 kb)

Fig. S6

Immunofluorescence staining for SOX17, FOXA2, BRACHYURY and GSC after differentiation with CHIR-99021 followed by activin A. a Immunofluorescence staining for SOX17 (green) and FOXA2 (red) and b BRACHYURY (green) and FOXA2 (red) in Hues8 cells after 3 days of differentiation with Chir+ActA. A composite image was assembled from four individual images (each with 100x magnification). The image depicts a differentiated ES cell colony with distinct endodermal outgrowth (asterisk), a core region composed of FOXA2/SOX17-negative cells (arrowhead) with a rim of FOXA2-positive cells (arrow). This image shows the FOXA2-positive outgrowth (asterisk) and the core region with BRACHYURY-positive cells (arrows) and frequent FOXA2/BRACHYURY double-positive cells in the rim of the core region (merge = yellow). Scale bar = 200 μM. c The transition zone between the core region and the endodermal outgrowth was defined by a distinct fraction of GSC-positive cells. These cells were scarcely detected inside the core region. The outgrowth of differentiated cells was predominantly GSC-positive with a specific nuclear staining. Of note is the cytoplasmic distribution in dividing cells (arrowhead). Left and center image original magnification 100x, scale bar = 200 μM. Lower right image original magnification 200x, scale bar = 100 μM (GIF 392 kb)

High Resolution (TIFF 6406 kb)

Fig. S7

Western blot analysis after treatment with wnt3a, activin A or CHIR-99,021. Western blot analyses showed the dynamics of wnt3a, activin A and CHIR-99021 on the protein expression of downstream effectors of the TGF-beta pathway and the canonical Wnt-pathway during 3 days of differentiation with the indicated treatment. a Presented is SMAD2/3 and phosphorylated SMAD2/3 to show activation of the nodal/TGF-beta pathway and beta catenin and ser33/37/thr41 phosporylated beta catenin to verify the activation of the canonical Wnt-pathway. GSK3beta was stably expressed in all samples without any notable changes. The GSK3beta activating tyr216 phosphorylation was reduced in CHIR-99021 induced cells and vice versa the inactivating ser9 phosphorylation was increased. After the one day treatment with CHIR-99021 and change to activin a supplemented medium, GSK3beta tyr216 and ser9 phosphorylation disappeared. b Quantification of the Western blot protein bands for SMAD2 and phosphorylated SMAD2/3 by densitometry and normalization against GAPDH (JPEG 253 kb)

High Rsolution (TIFF 8354 kb)

Fig. S8

Promoter region of the ITGA5. The figure shows the 1 kb upstream region of the transcription start site of the ITGA5 gene encoding CD49e. Three putative TCF1b binding sites are highlighted in green. TSS = transcription start site. CDS = coding sequence (GIF 194 kb)

High Resolution (TIFF 731 kb)

Table S1

(DOCX 21 kb)

Table S2

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naujok, O., Diekmann, U. & Lenzen, S. The Generation of Definitive Endoderm from Human Embryonic Stem Cells is Initially Independent from Activin A but Requires Canonical Wnt-Signaling. Stem Cell Rev and Rep 10, 480–493 (2014). https://doi.org/10.1007/s12015-014-9509-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9509-0

Keywords

Navigation