Skip to main content

Advertisement

Log in

An Expanded Population of CD34+ Cells from Frozen Banked Umbilical Cord Blood Demonstrate Tissue Repair Mechanisms of Mesenchymal Stromal Cells and Circulating Angiogenic Cells in an Ischemic Hind Limb Model

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Peripheral vascular disease affects ~20 % of the population over 50 years of age and is a complication of type 2 diabetes. Cell therapy studies revealed that cells from older or diabetic donors have a reduced capacity to induce tissue repair compared to healthy and younger cells. This fact greatly impedes the use of autologous cells for treatment. Umbilical cord blood CD34+ cells are a source of angiogenic cells but unlike bone marrow CD34+ angiogenic cells, achieving clinically significant cell numbers has been difficult without in vitro expansion. We report here that culturing CD34+/CD45+ blood cells from frozen umbilical cord blood units in a medium supplemented with FGF4, SCF and FLT3-ligand produced a population of cells that remain CD34+/CD45+ but have an increased capacity for tissue healing. The cultured CD34+ cells were compared directly to non-cultured CD34+ cells in a mouse model of ischemia. Cultured CD34+ cells demonstrated strong paracrine signaling as well as the capacity to differentiate into endothelial cells, smooth muscle and striated muscle. We observed an improvement in blood flow and a significant reduction in foot necrosis. A second study was completed to assess the safety of the cells. No adverse effects were associated with the injection of the cultured cells. Our method described here for culturing umbilical cord blood cells resulted in cells with a strong paracrine effect that induces substantial tissue repair in a murine model of hind limb ischemia and evidence of engraftment and differentiation of the cultured cells into new vasculature and muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Staudacher, D. L., Preis, M., Lewis, B. S., Grossman, P. M., & Flugelman, M. Y. (2006). Cellular and molecular therapeutic modalities for arterial obstructive syndromes. Pharmacology and Therapeutics, 109, 263–273.

    Article  CAS  PubMed  Google Scholar 

  2. Rice, T. W., & Lumsden, A. B. (2006). Optimal medical management of peripheral arterial disease. Vascular and Endovascular Surgery, 40, 312–327.

    Article  PubMed  Google Scholar 

  3. Feener, E. P., & King, G. L. (1997). Vascular dysfunction in diabetes mellitus. Lancet, 350(Suppl 1), SI9–SI13.

    Article  PubMed  Google Scholar 

  4. Copland, I., Sharma, K., Lejeune, L., et al. (2008). CD34 expression on murine marrow-derived mesenchymal stromal cells: impact on neovascularization. Experimental Hematology, 36, 93–103.

    Article  CAS  PubMed  Google Scholar 

  5. Idei, N., Soga, J., Hata, T., et al. (2011). Autologous bone-marrow mononuclear cell implantation reduces long-term major amputation risk in patients with critical limb ischemia: a comparison of atherosclerotic peripheral arterial disease and Buerger disease. Circulation. Cardiovascular Interventions, 4, 15–25.

    Article  PubMed  Google Scholar 

  6. Jujo, K., Ii, M., & Losordo, D. W. (2008). Endothelial progenitor cells in neovascularization of infarcted myocardium. Journal of Molecular and Cellular Cardiology, 45, 530–544.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Elsharawy, M. A., Naim, M., & Greish, S. (2012). Human CD34+ stem cells promote healing of diabetic foot ulcers in rats. Interactive Cardiovascular and Thoracic Surgery, 14, 288–293.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Kawamoto, A., Katayama, M., Handa, N., et al. (2009). Intramuscular transplantation of G-CSF-mobilized CD34(+) cells in patients with critical limb ischemia: a phase I/IIa, multicenter, single-blinded, dose-escalation clinical trial. Stem Cells, 27, 2857–2864.

    Article  CAS  PubMed  Google Scholar 

  9. Zhuo, Y., Li, S. H., Chen, M. S., et al. (2010). Aging impairs the angiogenic response to ischemic injury and the activity of implanted cells: combined consequences for cell therapy in older recipients. The Journal of Thoracic and Cardiovascular Surgery, 139, 1286–1294. 94 e1-2.

    Article  PubMed  Google Scholar 

  10. Sugihara, S., Yamamoto, Y., Matsuura, T., et al. (2007). Age-related BM-MNC dysfunction hampers neovascularization. Mechanisms of Ageing and Development, 128, 511–516.

    Article  CAS  PubMed  Google Scholar 

  11. Smadja, D. M., Duong-van-Huyen, J. P., Dal Cortivo, L., et al. (2012). Early endothelial progenitor cells in bone marrow are a biomarker of cell therapy success in patients with critical limb ischemia. Cytotherapy, 14, 232–239.

    Article  CAS  PubMed  Google Scholar 

  12. Caballero, S., Sengupta, N., Afzal, A., et al. (2007). Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells. Diabetes, 56, 960–967.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Fadini, G. P., Miorin, M., Facco, M., et al. (2005). Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. Journal of the American College of Cardiology, 45, 1449–1457.

    Article  CAS  PubMed  Google Scholar 

  14. Vanneaux, V., El-Ayoubi, F., Delmau, C., et al. (2010). In vitro and in vivo analysis of endothelial progenitor cells from cryopreserved umbilical cord blood: are we ready for clinical application? Cell Transplantation, 19, 1143–1155.

    Article  PubMed  Google Scholar 

  15. Barclay, G. R., Tura, O., Samuel, K., et al. (2012). Systematic assessment in an animal model of the angiogenic potential of different human cell sources for therapeutic revascularization. Stem Cell Research & Therapy, 3, 23.

    Article  CAS  Google Scholar 

  16. Mareschi, K., Biasin, E., Piacibello, W., Aglietta, M., Madon, E., & Fagioli, F. (2001). Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica, 86, 1099–1100.

    CAS  PubMed  Google Scholar 

  17. Erices, A., Conget, P., & Minguell, J. J. (2000). Mesenchymal progenitor cells in human umbilical cord blood. British Journal of Haematology, 109, 235–242.

    Article  CAS  PubMed  Google Scholar 

  18. Kern, S., Eichler, H., Stoeve, J., Kluter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood or adipose tissue. Stem Cells, 24, 1294–1301.

    Article  CAS  PubMed  Google Scholar 

  19. Bieback, K., Kern, S., Kluter, H., & Eichler, H. (2004). Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells, 22, 625–634.

    Article  PubMed  Google Scholar 

  20. Rogers, I., Yamanaka, N., Bielecki, R., et al. (2007). Identification and analysis of in vitro cultured CD45-positive cells capable of multi-lineage differentiation. Experimental Cell Research, 313, 1839–1852.

    Article  CAS  PubMed  Google Scholar 

  21. Rogers, I. M., Yamanaka, N., & Casper, R. F. (2008). A simplified procedure for hematopoietic stem cell amplification using a serum-free, feeder cell-free culture system. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation, 14, 927–937.

    Article  CAS  Google Scholar 

  22. Wong, C. J., Casper, R. F., & Rogers, I. M. (2010). Epigenetic changes to human umbilical cord blood cells cultured with three proteins indicate partial reprogramming to a pluripotent state. Experimental Cell Research, 316, 927–939.

    Article  CAS  PubMed  Google Scholar 

  23. Chua, S. J., Bielecki, R., Yamanaka, N., Fehlings, M. G., Rogers, I. M., & Casper, R. F. (2010). The effect of umbilical cord blood cells on outcomes after experimental traumatic spinal cord injury. Spine (Phila Pa 1976), 35, 1520–1526.

    Article  Google Scholar 

  24. Helisch, A., Wagner, S., Khan, N., et al. (2006). Impact of mouse strain differences in innate hindlimb collateral vasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 520–526.

    Article  CAS  PubMed  Google Scholar 

  25. Walter, D. H., Krankenberg, H., Balzer, J. O., et al. (2011). Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebo-controlled pilot trial (PROVASA). Circulation. Cardiovascular Interventions, 4, 26–37.

    Article  PubMed  Google Scholar 

  26. Shultz, L. D., Schweitzer, P. A., Christianson, S. W., et al. (1995). Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. Journal of Immunology, 154, 180–191.

    CAS  Google Scholar 

  27. Sonnemann, K. J., & Bement, W. M. (2011). Wound repair: toward understanding and integration of single-cell and multicellular wound responses. Annual Review of Cell and Developmental Biology, 27, 237–263.

    Article  CAS  PubMed  Google Scholar 

  28. Sivan-Loukianova, E., Awad, O. A., Stepanovic, V., Bickenbach, J., & Schatteman, G. C. (2003). CD34+ blood cells accelerate vascularization and healing of diabetic mouse skin wounds. Journal of Vascular Research, 40, 368–377.

    Article  CAS  PubMed  Google Scholar 

  29. Ward, M. R., Stewart, D. J., & Kutryk, M. J. (2007). Endothelial progenitor cell therapy for the treatment of coronary disease, acute MI, and pulmonary arterial hypertension: current perspectives. Catheterization and Cardiovascular Interventions, 70, 983–998.

    Article  PubMed  Google Scholar 

  30. Akiyama, K., You, Y. O., Yamaza, T., et al. (2012). Characterization of bone marrow derived mesenchymal stem cells in suspension. Stem Cell Research & Therapy, 3, 40.

    Article  CAS  Google Scholar 

  31. Lin, C. S., Ning, H., Lin, G., & Lue, T. F. (2012). Is CD34 truly a negative marker for mesenchymal stromal cells? Cytotherapy, 14, 1159–1163.

    Article  CAS  PubMed  Google Scholar 

  32. Lian, Q., Zhang, Y., Zhang, J., et al. (2010). Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation, 121, 1113–1123.

    Article  PubMed  Google Scholar 

  33. Fadini, G. P., Sartore, S., Albiero, M., et al. (2006). Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2140–2146.

    Article  CAS  PubMed  Google Scholar 

  34. Klibansky, D. A., Chin, A., Duignan, I. J., & Edelberg, J. M. (2006). Synergistic targeting with bone marrow-derived cells and PDGF improves diabetic vascular function. American Journal of Physiology. Heart and Circulatory Physiology, 290, H1387–H1392.

    Article  CAS  PubMed  Google Scholar 

  35. Qiang, T., Lugui, Q., Guangping, L., Changhong, L., Chenghuan, Z., Hengxing, M., Wansong, Y., (2010). Transplantation of healthy but not diabetic outgrowth endothelial cells could rescue ischemic myocardium in diabetic rabbits. Scandinavian Journal of Clinical & Laboratory Investigation.

  36. Schatteman, G. C., Hanlon, H. D., Jiao, C., Dodds, S. G., & Christy, B. A. (2000). Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. Journal of Clinical Investigation, 106, 571–578.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Gupta, R., & Losordo, D. W. (2011). Cell therapy for critical limb ischemia: moving forward one step at a time. Circulation. Cardiovascular Interventions, 4, 2–5.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Umbilical Cord Blood Collections: Research Centre for Women’s and Infants’ Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada, http://biobank.lunenfeld.ca

Funding

CIHR POP grant, Canadian Stem Cell Network, MaRS Innovations Proof of Principle Grant, CFI LEF Project 20694, Insception-Life Banks.

Conflict of Interest Disclosures

IMR, RFC are founders of Insception Biosciences.

Author Contributions

Jennifer Whiteley: Collection/assembly of data, data analysis/interpretation, manuscript writing

Ryszard Bielecki: Collection/assembly of data, data analysis/interpretation, manuscript writing

Mira Li: Collection/assembly of data, data analysis/interpretation, manuscript writing

Shawn Chua: Collection/assembly of data

Michael R. Ward: Collection/assembly of data, manuscript writing

Nobuko Yamanaka: Collection/assembly of data, data analysis/interpretation, manuscript writing

Duncan J. Stewart: Concept and design, financial support, data analysis and interpretation, manuscript writing

Robert F. Casper: Financial support, manuscript writing

Ian M. Rogers: Concept and design, financial support, administrative support, data analysis and interpretation, manuscript writing, final approval of manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. Rogers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whiteley, J., Bielecki, R., Li, M. et al. An Expanded Population of CD34+ Cells from Frozen Banked Umbilical Cord Blood Demonstrate Tissue Repair Mechanisms of Mesenchymal Stromal Cells and Circulating Angiogenic Cells in an Ischemic Hind Limb Model. Stem Cell Rev and Rep 10, 338–350 (2014). https://doi.org/10.1007/s12015-014-9496-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9496-1

Keywords

Navigation