Skip to main content
Log in

The Osteogenic Effect of Erythropoietin on Human Mesenchymal Stromal Cells is Dose-Dependent and Involves Non-Hematopoietic Receptors and Multiple Intracellular Signaling Pathways

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Erythropoietin (EPO) is a pleiotropic growth factor. Of interest for skeletal tissue engineering, the non-hematopoietic capabilities of EPO include its osteogenic and angiogenic potencies. The main aim of this study was to investigate the dose–response relationship and determine the lowest effective dose of EPO that reliably increases the osteogenic differentiation of human mesenchymal stromal cells (hMSCs). Additional aims were to elucidate the surface receptors and to investigate the role of the intracellular signaling pathways by blocking the mammalian target of rapamycin (mTOR), Jak-2 protein tyrosine kinase (JAK2), and phosphoinositide 3-kinases (PI3K). The primary outcome measures were two mineralization assays, Arsenazo III and alizarin red, applied after 10, 14, and 21 days. Moreover, alkaline phosphatase activity, cell number, and cell viability were determined after 2 and 7 days. A proportional dose–response relationship was observed. In vivo, the lowest effective dose of 20 IU/ml should be used for further research to accommodate safety concerns about adverse effects. Ex vivo, the most effective dose of 100 IU/ml could facilitate vascularization and bone ingrowth in cell-based scaffolds. The expression of non-hematopoietic receptors EPOR and CD131 was documented, and EPO triggered all three examined intracellular pathways. Future studies of the efficacy of EPO in cell-based tissue engineering can benefit from our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jelkmann, W. (1992). Erythropoietin: structure, control of production, and function, 72(2). Physiological Reviews, 72(2), 449–489.

    CAS  PubMed  Google Scholar 

  2. Kim, J., Jung, Y., Sun, H., Joseph, J., Mishra, A., Shiozawa, Y., et al. (2012). Erythropoietin mediated bone formation is regulated by mTOR signaling. Journal of Cellular Biochemistry, 113(1), 220–228.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Rölfing, J. H. D., Bendtsen, M., Jensen, J., Stiehler, M., Foldager, C. B., Hellfritzsch, M. B., et al. (2012). Erythropoietin augments bone formation in a rabbit posterolateral spinal fusion model. Journal of Orthopaedic Research, 30(7), 1083–1088. doi:10.1002/jor.22027.

    Google Scholar 

  4. Holstein, J. H., Menger, M. D., Scheuer, C., Meier, C., Culemann, U., Wirbel, R. J., et al. (2007). Erythropoietin (EPO): EPO-receptor signaling improves early endochondral ossification and mechanical strength in fracture healing. Life Sciences, 80(10), 893–900.

    Article  CAS  PubMed  Google Scholar 

  5. Holstein, J. H., Orth, M., Scheuer, C., Tami, A., Becker, S. C., Garcia, P., et al. (2011). Erythropoietin stimulates bone formation, cell proliferation, and angiogenesis in a femoral segmental defect model in mice. Bone, 49(5), 1037–1045.

    Article  CAS  PubMed  Google Scholar 

  6. Shiozawa, Y., Jung, Y., Ziegler, A. M., Pedersen, E. A., Wang, J., Wang, Z., et al. (2010). Erythropoietin couples hematopoiesis with bone formation. PLoS ONE, 5(5), e10853.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Ehrenreich, H., Weissenborn, K., Prange, H., Schneider, D., Weimar, C., Wartenberg, K., et al. (2009). Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke, 40(12), e647–e656.

    Google Scholar 

  8. Brines, M., Grasso, G., Fiordaliso, F., Sfacteria, A., Ghezzi, P., Fratelli, M., et al. (2004). Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proceedings of the National Academy of Sciences of the United States of America, 101(41), 14907–14912.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Burger, D., Xenocostas, A., & Feng, Q. P. (2009). Molecular basis of cardioprotection by erythropoietin. Current Molecular Pharmacology, 2(1), 56–69.

    CAS  PubMed  Google Scholar 

  10. Bennis, Y., Sarlon-Bartoli, G., Guillet, B., Lucas, L., Pellegrini, L., Velly, L., et al. (2012). Priming of late endothelial progenitor cells with erythropoietin before transplantation requires the CD131 receptor subunit and enhances their angiogenic potential. Journal of Thrombosis and Haemostasis : JTH, 10(9), 1914–1928.

    Article  CAS  PubMed  Google Scholar 

  11. Chateauvieux, S., Grigorakaki, C., Morceau, F., Dicato, M., & Diederich, M. (2011). Erythropoietin, erythropoiesis and beyond. Biochemical Pharmacology, 82(10), 1291–1303.

    Article  CAS  PubMed  Google Scholar 

  12. McGee, S. J., Havens, A. M., Shiozawa, Y., Jung, Y., & Taichman, R. S. (2012). Effects of erythropoietin on the bone microenvironment. Growth Factors (Chur, Switzerland), 30(1), 22–28.

    Article  CAS  Google Scholar 

  13. Certificates of Analysis. Retrieved June 2, 2013, from http://www.lonza.com/about-lonza/knowledge-center/certificates-of-analysis.aspx.

  14. Lysdahl, H., Baatrup, A., Nielsen, A. B., Foldager, C. B., & Bünger, C. (2013). Phenol red inhibits chondrogenic differentiation and affects osteogenic differentiation of human mesenchymal stem cells in vitro. Stem Cell Reviews and Reports, 9(2), 132–139.

    Google Scholar 

  15. Guo, L., Luo, T., Fang, Y., Yang, L., Wang, L., Liu, J., et al. (2012). Effects of erythropoietin on osteoblast proliferation and function. Clinical and Experimental Medicine. doi:10.1007/s10238-012-0220-7.

    Google Scholar 

  16. Laugsch, M., Metzen, E., Svensson, T., Depping, R., & Jelkmann, W. (2008). Lack of functional erythropoietin receptors of cancer cell lines. International Journal of Cancer, 122(5), 1005–1011.

    Google Scholar 

  17. Kato, S., Amano, H., Ito, Y., Eshima, K., Aoyama, N., Tamaki, H., et al. (2010). Effect of erythropoietin on angiogenesis with the increased adhesion of platelets to the microvessels in the hind-limb ischemia model in mice. Journal of Pharmacological Sciences, 112(2), 167–175.

    Article  CAS  PubMed  Google Scholar 

  18. Palani, S., & Sarkar, C. A. (2008). Positive receptor feedback during lineage commitment can generate ultrasensitivity to ligand and confer robustness to a bistable switch. Biophysical Journal, 95(4), 1575–1589.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Jung, Y., Song, J., Shiozawa, Y., Wang, J., Wang, Z., Williams, B., et al. (2008). Hematopoietic stem cells regulate mesenchymal stromal cell induction into osteoblasts thereby participating in the formation of the stem cell niche. Stem Cells, 26(8), 2042–2051.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Sorg, H., Krueger, C., Schulz, T., Menger, M. D., Schmitz, F., & Vollmar, B. (2009). Effects of erythropoietin in skin wound healing are dose related. The FASEB Journal, 23(9), 3049–3058.

    Google Scholar 

  21. Zwezdaryk, K. J., Coffelt, S. B., Figueroa, Y. G., Liu, J., Phinney, D. G., LaMarca, H. L., et al. (2007). Erythropoietin, a hypoxia-regulated factor, elicits a pro-angiogenic program in human mesenchymal stem cells. Experimental Hematology, 35(4), 640–652.

    Article  CAS  PubMed  Google Scholar 

  22. Eschbach, J. W., Egrie, J. C., Downing, M. R., Browne, J. K., & Adamson, J. W. (1987). Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. The New England Journal of Medicine, 316(2), 73–78.

    Article  CAS  PubMed  Google Scholar 

  23. Elliott, S., Busse, L., Bass, M. B., Lu, H., Sarosi, I., Sinclair, A. M., et al. (2006). Anti-Epo receptor antibodies do not predict Epo receptor expression. Blood, 107(5), 1892–1895.

    Article  CAS  PubMed  Google Scholar 

  24. Sinclair, A. M., Coxon, A., McCaffery, I., Kaufman, S., Paweletz, K., Liu, L., et al. (2010). Functional erythropoietin receptor is undetectable in endothelial, cardiac, neuronal, and renal cells. Blood, 115(21), 4264–4272.

    Article  CAS  PubMed  Google Scholar 

  25. Ghezzi, P., Bernaudin, M., Bernaudinb, M., Bianchi, R., Bianchic, R., Blomgren, K., et al. (2010). Erythropoietin: not just about erythropoiesis. Lancet, 375(9732), 2142.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We express our sincere gratitude to FACS Core Facility at Aarhus University, Denmark, for performing flow cytometry.

Conflicts of interest

The authors declare no potential conflicts of interest.

Financial support

We would like to extend our appreciation to the VELUX foundation for being the main financial contributor of this study. The Helga and Peter Kornings Foundation and Rygforskningsfonden i Aarhus granted additional financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hendrik Duedal Rölfing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Dose-response relationship and lowest effective dose of EPO, related to Fig. 1. Absolute values comparing EPO [IU/ml] groups with osteogenic medium (Pos C) are depicted for the following outcome measures: cell viability assay (XTT), alkaline phosphatase activity (ALP), and mineralization assay Arsenazo III (Arsenazo). Cells were continuously stimulated with EPO. Proliferation medium was employed as negative control (Neg C). Data are presented as mean ± SD and post-hoc p-values against Pos C are given. (PDF 95 kb)

Figure S2

Intracellular pathway analyses, related to Fig. 5. Outcome measurements: cell viability (XTT), alkaline phosphatase activity (ALP), and primary outcome mineralization assays alizarin red (AZR) and Arsenazo III (Arsenazo) presented as absolute values. In these experiments, all hMSCs were continuously stimulated with 20 IU/ml EPO. Potential intracellular pathways were screened by constant blocking of mTOR with 10 nM rapamycin (Rapa), JAK2 with 10 μM AG490, and PI3K with 50 μM LY294002 (LY) or 50 nM wortmannin (Wort). Data are presented as mean ± SD. * p < 0.0001, ** p < 0.001. (PDF 108 kb)

Figure S3

Intracellular pathway analysis alizarin red staining after 14 days, related to Fig. 5. Representative alizarin red staining visualizing mineralization after 14 days continuous stimulation with 20 IU/ml EPO with and without inhibition with intracellular pathway inhibitors rapamycin, AG490, LY4229002 or Wortmannin. Proliferation medium was employed as negative control (Neg C). (PDF 1034 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rölfing, J.H.D., Baatrup, A., Stiehler, M. et al. The Osteogenic Effect of Erythropoietin on Human Mesenchymal Stromal Cells is Dose-Dependent and Involves Non-Hematopoietic Receptors and Multiple Intracellular Signaling Pathways. Stem Cell Rev and Rep 10, 69–78 (2014). https://doi.org/10.1007/s12015-013-9476-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-013-9476-x

Keywords

Navigation