Skip to main content
Log in

Both Chondroinduction and Proliferation Account for Growth of Cartilage Nodules in Mouse Limb Bud Cultures

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

High density micromass culture of limb bud mesenchymal stem cells isolated from mouse embryos represents a well-established model to study chondro- and osteogenesis. In spite of wide usage of the limb bud model, the mechanisms underlying cartilage nodule growth remain unclear. To determine whether cartilage nodules grow solely by induction of surrounding cells or proliferation of cells within the nodules, we performed BrdU/Collagen II (Col II) double-labelling and 3D reconstruction of growing cartilage nodules. We demonstrated that Col II-positive replicating chondrocytes are present throughout the nodules with the majority of replicating cells localized on the top (cell-medium interface) and periphery/sides of nodules. Kinetic analysis of cellular proliferation within the nodules demonstrated the time-dependent reduction in number of Col II-positive replicating cells. The sequential expression of Col I, Col II, Col X, parathyroid hormone related peptide receptor 1 (Pthr1), bone sialoprotein (Bsp) and osteocalcin (Ocn) mRNAs was similar to that characterizing chondrocyte differentiation and maturation in vivo. We conclude that the limb bud model recapitulates events seen during endochondral bone formation: cellular aggregation, proliferation, differentiation and maturation to hypertrophy. We also conclude that not only induction of peri-nodular mesenchymal cells but also proliferation of chondrocytes within cartilage nodules contribute to cartilage nodule growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

BrdU:

Bromodeoxyuridine

BSP:

Bone sialoprotein

Col:

Collagen

FITC:

Fluorescein isothiocyanate

OCN:

Osteocalcin

PBS:

Phosphate buffered saline

PI:

Propidium iodide

PSA:

Puck’s saline without glucose

PSG:

Puck’s saline with glucose

PTHR1:

Parathyroid hormone related peptide receptor 1

SEM:

Standard error of the mean

References

  1. DeLise, A. M., Stringa, E., Woodward, W. A., Mello, M. A., & Tuan, R. S. (2000). Embryonic limb mesenchyme micromass culture as an in vitro model for chondrogenesis and cartilage maturation. Methods in Molecular Biology, 137, 359–375.

    PubMed  CAS  Google Scholar 

  2. Lengner, C. J., Lepper, C., van Wijnen, A. J., Stein, J. L., Stein, G. S., & Lian, J. B. (2004). Primary mouse embryonic fibroblasts: a model of mesenchymal cartilage formation. Journal of Cellular Physiology, 200, 327–333.

    Article  PubMed  CAS  Google Scholar 

  3. O’Driscoll, S. W., Recklies, A. D., & Poole, A. R. (1994). Chondrogenesis in periosteal explants. An organ culture model for in vitro study. J Bone Joint Surg. Am., 76, 1042–1051.

    Google Scholar 

  4. Gillotte, D. M., Fox, P. L., Mjaatvedt, C. H., Hoffman, S., & Capehart, A. A. (2003). An in vitro method for analysis of chondrogenesis in limb mesenchyme from individual transgenic (hdf) embryos. Methods in Cell Science, 25, 97–104.

    Article  PubMed  Google Scholar 

  5. Dienstman, S. R., Biehl, J., Holtzer, S., & Holtzer, H. (1974). Myogenic and chondrogenic lineages in developing limb buds grown in vitro. Developmental Biology, 39, 83–95.

    Article  PubMed  CAS  Google Scholar 

  6. Aydelotte, M. B., & Kochhar, D. M. (1972). Development of mouse limb buds in organ culture: chondrogenesis in the presence of a proline analog, L-azetidine-2-carboxylic acid. Developmental Biology, 28, 191–201.

    Article  PubMed  CAS  Google Scholar 

  7. Weston, A. D., Rosen, V., Chahndraratna, R. A. S., & Underhill, T. M. (2000). Regulation of skeletal progenitor differentiation by the BMP and retinoid signaling pathways. The Journal of Cell Biology, 148286, 679–690.

    Article  Google Scholar 

  8. Boskey, A. L., Paschalis, E. P., Binderman, I., & Doty, S. B. (2002). BMP-6 accelerates both chondrogenesis and mineral maturation in differentiating chick limb-bud mesenchymal cell cultures. Journal of Cellular Biochemistry, 84, 509–519.

    Article  PubMed  CAS  Google Scholar 

  9. DeLise, A. M., & Tuan, R. S. (2002). Alterations in the spatiotemporal expression pattern and function of N-cadherin inhibit cellular condensation and chondrogenesis of limb mesenchymal cells in vitro. Journal of Cellular Biochemistry, 87, 342–359.

    Article  PubMed  CAS  Google Scholar 

  10. DeLise, A. M., & Tuan, R. S. (2002). Analysis of N-cadherin function in limb mesenchymal chondrogenesis in vitro. Developmental Dynamics, 225, 195–204.

    Article  PubMed  CAS  Google Scholar 

  11. Stanton, L. A., Sabari, S., Sampaio, A. V., Underhill, T. M., & Beier, F. (2004). p38 MAP kinase signalling is required for hypertrophic chondrocyte differentiation. Biochemical Journal, 378, 53–62.

    Article  PubMed  CAS  Google Scholar 

  12. Ahrens, P. B., Solursh, M., & Reiter, R. S. (1977). Stage-related capacity for limb chondrogenesis in cell culture. Developmental Biology, 60, 69–82.

    Article  PubMed  CAS  Google Scholar 

  13. Pizette, S., & Niswander, L. (2000). BMPs are required at two steps of limb chondrogenesis: formation of prechondrogenic condensations and their differentiation into chondrocytes. Developmental Biology, 219, 237–249.

    Article  PubMed  CAS  Google Scholar 

  14. Hatakeyama, Y., Tuan, R. S., & Shum, L. (2004). Distinct functions of BMP4 and GDF5 in the regulation of chondrogenesis. Journal of Cellular Biochemistry, 91, 1204–1217.

    Article  PubMed  CAS  Google Scholar 

  15. Williams, D. R., Jr., Presar, A. R., Richmond, A. T., Mjaatvedt, C. H., Hoffman, S., & Capehart, A. A. (2005). Limb chondrogenesis is compromised in the versican deficient hdf mouse. Biochemical and Biophysical Research Communications, 334, 960–966.

    Article  PubMed  CAS  Google Scholar 

  16. Owens, E. M., & Solursh, M. (1981). In vitro histogenic capacities of limb mesenchyme from various stage mouse embryos. Developmental Biology, 88, 297–311.

    Article  PubMed  CAS  Google Scholar 

  17. Mello, M. A., & Tuan, R. S. (1999). High density micromass cultures of embryonic limb bud mesenchymal cells: an in vitro model of endochondral skeletal development. In Vitro Cellular & Developmental Biology. Animal, 35, 262–269.

    Article  CAS  Google Scholar 

  18. Zakany, R., Bako, E., Felszeghy, S., Hollo, K., Balazs, M., Bardos, H., et al. (2001). Okadaic acid-induced inhibition of protein phosphatase 2A enhances chondrogenesis in chicken limb bud micromass cell cultures. Anat. Embryol. (Berl), 203, 23–34.

    Google Scholar 

  19. Wroblewski, J., Engstrom, M., Edwall-Arvidsson, C., Sjoberg, G., Sejersen, T., & Lendahl, U. (1996). Nestin distribution in the developing limb bud in vivo and in vitro. Annals of the New York Academy of Sciences, 785, 353–355.

    Article  PubMed  CAS  Google Scholar 

  20. Stanton, L. A., Underhill, T. M., & Beier, F. (2003). MAP kinases in chondrocyte differentiation. Developmental Biology, 263, 165–175.

    Article  PubMed  CAS  Google Scholar 

  21. Grigoriadis, A. E., Heersche, J. N., & Aubin, J. E. (1996). Analysis of chondroprogenitor frequency and cartilage differentiation in a novel family of clonal chondrogenic rat cell lines. Differentiation, 60, 299–307.

    Article  PubMed  CAS  Google Scholar 

  22. Bonnelye, E., Merdad, L., Kung, V., & Aubin, J. E. (2001). The orphan nuclear estrogen receptor-related receptor alpha (ERRalpha) is expressed throughout osteoblast differentiation and regulates bone formation in vitro. The Journal of Cell Biology, 153, 971–984.

    Article  PubMed  CAS  Google Scholar 

  23. Boskey, A. L., Stiner, D., Doty, S. B., Binderman, I., & Leboy, P. (1992). Studies of mineralization in tissue culture: optimal conditions for cartilage calcification. Bone and Mineral, 16, 11–36.

    Article  PubMed  CAS  Google Scholar 

  24. San Antonio, J. D., & Tuan, R. S. (1986). Chondrogenesis of limb bud mesenchyme in vitro: stimulation by cations. Developmental Biology, 115, 313–324.

    Article  PubMed  CAS  Google Scholar 

  25. Hoffman, L. M., Garcha, K., Karamboulas, K., Cowan, M. F., Drysdale, L. M., Horton, W. A., et al. (2006). BMP action in skeletogenesis involves attenuation of retinoid signaling. The Journal of Cell Biology, 174, 101–113.

    Google Scholar 

  26. Ahrens, P. B., Solursh, M., Reiter, R. S., & Singley, C. T. (1979). Position-related capacity for differentiation of limb mesenchyme in cell culture. Developmental Biology, 69, 436–450.

    Article  PubMed  CAS  Google Scholar 

  27. Jiang, H., Soprano, D. R., Li, S. W., Soprano, K. J., Penner, J. D., Gyda, M., III, et al. (1995). Modulation of limb bud chondrogenesis by retinoic acid and retinoic acid receptors. International Journal of Developmental Biology, 39, 617–627.

  28. Edwall-Arvidsson, C., & Wroblewski, J. (1996). Characterization of chondrogenesis in cells isolated from limb buds in mouse. Anat. Embryol. (Berl), 193, 453–461.

    Article  CAS  Google Scholar 

  29. Mello, M. A., & Tuan, R. S. (2006). Effects of TGF-beta1 and triiodothyronine on cartilage maturation: in vitro analysis using long-term high-density micromass cultures of chick embryonic limb mesenchymal cells. Journal of Orthopaedic Research, 24, 2095–2105.

    Article  PubMed  CAS  Google Scholar 

  30. Renault, J. Y., Caillaud, J. M., & Chevalier, J. (1995). Ultrastructural characterization of normal and abnormal chondrogenesis in micromass rat embryo limb bud cell cultures. Toxicology and Applied Pharmacology, 130, 177–187.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang, X., Ziran, N., Goater, J. J., Schwarz, E. M., Puzas, J. E., Rosier, R. N., et al. (2004). Primary murine limb bud mesenchymal cells in long-term culture complete chondrocyte differentiation: TGF-beta delays hypertrophy and PGE2 inhibits terminal differentiation. Bone, 34, 809–817.

    Google Scholar 

Download references

Acknowledgements

M.O. and J.E.A. are members of the Ontario Stem Cell initiative, J.E.A. is a member of the Stem Cell Network of Centres of Excellence, and M.O. is a member of the Heart & Stroke/Richard Lewar Centre of Excellence.

Conflict of Interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Opas.

Additional information

Contract grant sponsor: CIHR; Contract grant number: MOP-106461.

Contract grant sponsor: CIHR; Contract grant number: MOP-102549.

Contract grant sponsor: CIHR; Contract grant number: MOP-83704.

Authors’ contributions

Andrei V. Malko: Collection and assembly of data Data analysis and interpretation, Manuscript writing

Maria Villagomez: Collection and assembly of data Data analysis and interpretation, Manuscript writing

Jane E. Aubin: Conception and design Data analysis and interpretation, Manuscript writing and Final approval

M. Opas: Conception and design Data analysis and interpretation, Manuscript writing and Final approval

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Morphological characterization of mouse limb bud cultures by phase-contrast microscopy of live cultures on days 2, 4, 6 and 8. On day 2, cells were already confluent and condensations, which will give rise to cartilage nodules, have started to form. On day 4, well defined oval-shaped cartilage nodules were present and characterized by rounded cells and refractile matrix. On days 6 and 8, nodules were progressively bigger in size. Note gradual change in shape of cells within the nodules. C - condensation; N - nodule. (TIFF 2633 kb)

Supplemental Table 1

Primers are listed in 5′ to 3′ orientation. The expected product size as well as the annealing temperature and number of PCR cycles used for each set of primers are indicated. (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malko, A.V., Villagomez, M., Aubin, J.E. et al. Both Chondroinduction and Proliferation Account for Growth of Cartilage Nodules in Mouse Limb Bud Cultures. Stem Cell Rev and Rep 9, 121–131 (2013). https://doi.org/10.1007/s12015-013-9434-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-013-9434-7

Keywords

Navigation