Skip to main content

Advertisement

Log in

The Therapeutic Potential, Challenges and Future Clinical Directions of Stem Cells from the Wharton’s Jelly of the Human Umbilical Cord

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) from bone marrow, adult organs and fetuses face the disadvantages of invasive isolation, limited cell numbers and ethical constraints while embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) face the clinical hurdles of potential immunorejection and tumorigenesis respectively. These challenges have prompted interest in the study and evaluation of stem cells from birth-associated tissues. The umbilical cord (UC) has been the most popular. Hematopoietic stem cells (HSCs) harvested from cord blood have been successfully used for the treatment of hematopoietic diseases. Stem cell populations have also been reported in other compartments of the UC viz., amnion, subamnion, perivascular region, Wharton’s jelly, umbilical blood vessel adventia and endothelium. Differences in stemness characteristics between compartments have been reported and hence derivation protocols using whole UC pieces containing all compartments yield mixed stem cell populations with varied characteristics. Stem cells derived directly from the uncontaminated Wharton’s jelly (hWJSCs) appear to offer the best clinical utility because of their unique beneficial properties. They are non-controversial, can be harvested painlessly in abundance, proliferative, possess stemness properties that last several passages in vitro, multipotent, hypoimmunogenic and do not induce tumorigenesis even though they have some ESC markers. hWJSCs and its extracts (conditioned medium and lysate) also possess anti-cancer properties and support HSC expansion ex vivo. They are thus attractive autologous or allogeneic agents for the treatment of malignant and non-malignant hematopoietic and non-hematopoietic diseases. This review critically evaluates their therapeutic value, the challenges and future directions for their clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Laurent, L. C., Ulitsky, I., Slavin, I., et al. (2011). Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell, 8, 106–118.

    Article  PubMed  CAS  Google Scholar 

  2. Ben-David, U., & Benvenisty, N. (2011). The tumorigenicity of human embryonic and induced pluripotent stem cells. Nature Reviews Cancer, 11, 268–277.

    Article  PubMed  CAS  Google Scholar 

  3. Gutierrez-Aranda, I., Ramos-Mejia, V., Bueno, C., et al. (2010). Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells, 28, 1568–1570.

    Article  PubMed  Google Scholar 

  4. Bongso, A., Fong, C. Y., & Gauthaman, K. (2008). Taking stem cells to the clinic: major challenges. Journal of Cellular Biochemistry, 105, 1352–1360.

    Article  PubMed  CAS  Google Scholar 

  5. Pappa, K. I., & Anagnou, N. P. (2009). Novel sources of fetal stem cells: where do they fit on the developmental continuum? Future Medicine, 4, 423–433.

    Google Scholar 

  6. Weiss, M. L., & Troyer, D. L. (2006). Stem cells in the umbilical cord. Stem Cell Reviews, 2, 155–162.

    Article  PubMed  CAS  Google Scholar 

  7. De-Miguel, M. P., Arnalich-Montiel, F., Lopez-Iglesias, P., Blazquez-Martinez, A., & Nistal, M. (2009). Epiblast-derived stem cells in embryonic and adult tissues. International Journal of Developmental Biology, 53, 1529–1540.

    Article  PubMed  Google Scholar 

  8. Henderson, J. K., Draper, J. S., Baillie, H. S., et al. (2002). Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells, 20, 329–337.

    Article  PubMed  CAS  Google Scholar 

  9. William, P. L., Banister, L. H., Berry, M. M., et al. (1995). Grays anatomy (38th ed.). London: ELBS Churchill Livingstone.

    Google Scholar 

  10. Jeschke, M. G., Gauglitz, G. G., Phan, T. T., Herndon, D. N., & Kita, K. (2011). Umbilical cord lining membrane and Wharton’s jelly-derived mesenchymal stem cells: the similarities and differences. Open Tissue Engineering and Regenerative Medicine Journal, 4, 21–27.

    Article  Google Scholar 

  11. Conconi, M. T., Di Liddo, R., Tommasini, M., Calore, C., & Parnigotto, P. P. (2011). Phenotype and differentiation potential of stromal populations obtained from various zones of human umbilical cord: an overview. Open Tissue Engineering and Regenerative Medicine Journal, 4, 6–20.

    Article  Google Scholar 

  12. Weiss, M. L., Medicetty, S., Bledsoe, A. R., Rachakatla, R. S., Choi, M., & Merchav, S. (2006). Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells, 24, 781–792.

    Article  PubMed  CAS  Google Scholar 

  13. Seshareddy, K., Troyer, D., & Weiss, M. L. (2008). Methods to isolate mesenchymal-like cells from Wharton’s jelly of umbilical cord. Methods in Cell Biology, 86, 101–119.

    Article  PubMed  CAS  Google Scholar 

  14. Wang, H. S., Hung, S. C., Peng, S. T., et al. (2004). Mesenchymal stem cells in the Wharton’s Jelly of the human umbilical cord. Stem Cells, 22, 1330–1337.

    Article  PubMed  Google Scholar 

  15. Fong, C. Y., Richards, M., Manasi, N., Biswas, A., & Bongso, A. (2007). Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Reproductive Biomedicine Online, 15, 708–718.

    Article  PubMed  CAS  Google Scholar 

  16. Fong, C. Y., Gauthaman, K., & Bongso, A. (2009). Reproductive stem cells of embryonic origin: comparative properties and potential benefits of human embryonic stem cells and Wharton’s jelly stem cells. In C. Simon & A. Pellicer (Eds.), AStem cells in human reproduction (2nd ed., pp. 136–149). New York: Informa Healthcare.

    Google Scholar 

  17. Fong, C. Y., Subramanian, A., Biswas, A., et al. (2010). Derivation efficiency, cell proliferation, frozen-thaw survival, ‘stemness’ properties, and differentiation of human Wharton’s jelly stem cells: their potential for concurrent banking with cord blood for regenerative medicine purposes. Reproductive Biomedicine Online, 21, 391–401.

    Article  PubMed  Google Scholar 

  18. Angelucci, S., Marchisio, M., Giuseppe, F. D., Pierdomenico, L., Sulpizio, M., & Eleuterio, E. (2010). Proteome analysis of human Wharton’s jelly cells during in vitro expansion. Proteome Science, 8, 18–25.

    Article  PubMed  Google Scholar 

  19. Ding, D. C., Shyu, W. C., Lin, S. Z., Liu, H. W., Chiou, S. H., & Chu, T. Y. (2012). Human umbilical cord mesenchymal stem cells support non-tumorigenic expansion of human embryonic stem cells. Cell Transplantation. doi:10.3727/096368912X647199.

  20. Kikuchi-Taura, A., Taguchi, A., Kanda, T., et al. (2012). Human umbilical cord provides a significant source of unexpanded mesenchymal stromal cells. Cytotherapy, 14, 441–450.

    Article  PubMed  CAS  Google Scholar 

  21. Lu, L. L., Liu, Y. J., Yang, S. G., et al. (2006). Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica, 91, 1017–1026.

    PubMed  CAS  Google Scholar 

  22. Schugar, R. C., Chirieleison, S. M., Wescoe, K. E., et al. (2009). High harvest yield, high expansion, and phenotype stability of CD146 mesenchymal stromal cells from whole primitive human umbilical cord tissue. Journal of Biomedicine and Biotechnology, 2009, 789526.

    Article  PubMed  Google Scholar 

  23. Capelli, C., Gotti, E., Morigi, M., et al. (2011). Minimally manipulated whole human umbilical cord is a rich source of clinical-grade human mesenchymal stromal cells expanded in human platelet lysate. Cytotherapy, 13, 786–801.

    Article  PubMed  CAS  Google Scholar 

  24. Bosch, J., Houben, A. P., Radke, T. F., et al. (2012). Distinct differentiation potential of ‘MSC’ derived from cord blood and umbilical cord: are cord-derived cells true mesenchymal stromal cells? Stem Cells and Development. doi:10.1089/scd.2011.0414.

  25. Tsagias, N., Koliakos, I., Karagiannis, V., Eleftheriadou, M., & Koliakos, G. G. (2011). Isolation of mesenchymal stem cells using the total length of umbilical cord for transplantation purposes. Transfusion Medicine, 21, 253–261.

    Article  PubMed  CAS  Google Scholar 

  26. Kita, K., Gauglitz, G. G., Phan, T. T., Herndon, D. N., & Jeschke, M. G. (2010). Isolation and characterization of mesenchymal stem cells from the sub amniotic human umbilical cord lining membrane. Stem Cells and Development, 19, 491–502.

    Article  PubMed  CAS  Google Scholar 

  27. Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M. M., & Davies, J. E. (2005). Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells, 23, 220–229.

    Article  PubMed  Google Scholar 

  28. Romanov, Y. A., Svintsitskaya, V. A., & Smirnov, V. N. (2003). Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells, 21, 105–110.

    Article  PubMed  Google Scholar 

  29. Watt, S. M., Su, C. C., & Chan, J. Y. (2010). The therapeutic potential of stem cells in umbilical cord and umbilical cord blood. Journal of Medical Sciences, 30, 177–187.

    Google Scholar 

  30. Nanaev, A. K., Kohnen, G., Milovanov, A. P., Domogatsky, S. P., & Kaufmann, P. (1997). Stromal differentaition and architecture of the human umbilical cord. Placenta, 18, 53–64.

    Article  PubMed  CAS  Google Scholar 

  31. Ishige, I., Nagamura-Inoue, T., Honda, M. J., et al. (2009). Comparison of mesenchymal stem cells derived from arterial, venous and Whartons’ jelly explants of human umbilical cord. International Journal of Hematology, 90, 261–269.

    Article  PubMed  Google Scholar 

  32. Mareschi, K., Biasin, E., Piacibello, W., Aglietta, M., Madon, E., & Fagioli, F. (2001). Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica, 86, 1099–1100.

    PubMed  CAS  Google Scholar 

  33. Wexler, S. A., Donaldson, C., Denning-Kendall, P., Rice, C., Bradley, B., & Hows, J. M. (2003). Adult bone marrow is a rich source of human mesenchymal stem cells but umbilical cord and mobilized blood adult blood are not. British Journal of Haematology, 121, 368–374.

    Article  PubMed  Google Scholar 

  34. Lee, O. K., Kuo, T. K., Chen, W. M., Lee, K. D., Hsieh, S. L., & Chen, T. H. (2004). Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 103, 1669–1675.

    Article  PubMed  CAS  Google Scholar 

  35. Musina, R. A., Bekchanova, E. S., Belyavskii, A. V., Grinenko, T. S., & Sukhikh, G. T. (2007). Umbilical cord blood mesenchymal stem cells. Bulletin of Experimental Biology and Medicine, 143, 127–131.

    Article  PubMed  CAS  Google Scholar 

  36. Secco, M., Zucconi, E., Vieira, N. M., et al. (2008). Multipotent stem cells from umbilical cord: cord is richer than blood. Stem Cells, 26, 146–150.

    Article  PubMed  CAS  Google Scholar 

  37. Hass, R., Kasper, C., Bohm, S., & Jacobs, R. (2011). Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling, 9, 1–14.

    Article  Google Scholar 

  38. La Rocca, G., Anzalone, R., Corrao, S., et al. (2009). Isolation and characterization of OCT4+/HLA-G + mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochemistry and Cell Biology, 131, 267–282.

    Article  PubMed  Google Scholar 

  39. Anzalone, R., Lo Iacono, M., Corrao, S., et al. (2010). New emerging potentials for human Wharton’s jelly mesenchymal stem cells; immunological features and hepatocyte-like differentiative capacity. Stem Cells and Development, 19, 423–438.

    Article  PubMed  CAS  Google Scholar 

  40. La Rocca, G. (2011). Connecting the dots: the promises of Wharton’s jelly mesenchymal stem cells for tissue repair and regeneration. Open Tissue Engineering and Regenerative Medicine Journal, 4, 3–5.

    Article  Google Scholar 

  41. Wang, L., Ott, L., Seshareddy, K., Weiss, M., & Detamore, M. S. (2011). Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells. Future Medicine, 6, 95–109.

    CAS  Google Scholar 

  42. Lutjimeier, B., Troyer, D. L., & Weiss, M. L. (2010). Wharton’s jelly-derived mesenchymal stromal cells. In C. L. Cetrulo, K. J. Cetrulo, & C. L. Cetrulo Jr. (Eds.), Perinatal stem cells (pp. 79–97). NJ: Wiley.

    Chapter  Google Scholar 

  43. Troyer, D. L., & Weiss, M. L. (2008). Concise review: Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells, 26, 591–599.

    Article  PubMed  Google Scholar 

  44. Prasanna, S. J., & Jahnavi, V. S. (2011). Wharton’s jelly mesenchymal stem cells as off-the-shelf cellular therapeutics: a closer look into their regenerative and immunomodulatory properties. Open Tissue Engineering and Regenerative Medicine Journal, 4, 28–38.

    Article  Google Scholar 

  45. Karahuseyinoglu, S., Cinar, O., Kilic, E., et al. (2007). Biology of stem cells in human umbilical cord stroma: In situ and in vitro surveys. Stem Cells, 25, 319–331.

    Article  PubMed  CAS  Google Scholar 

  46. Wang, X. Y., Lan, Y., He, W. Y., et al. (2008). Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos. Blood, 111, 2436–2443.

    Article  PubMed  CAS  Google Scholar 

  47. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    Article  PubMed  CAS  Google Scholar 

  48. Taghizadeh, R. R., Cetrulo, K. J., & Cetrulo, C. L. (2011). Wharton’s jelly stem cells: future clinical applications. Placenta, 32, S311–S315.

    Article  PubMed  CAS  Google Scholar 

  49. Meyer, T., Pfeifroth, A., & Hocht, B. (2008). Isolation, and characterization of mesenchymal stem cells in Wharton’s jelly of the human umbilical cord: potent cells for cell-based therapies in paediatric surgery? European Surgery, 40, 239–244.

    Article  Google Scholar 

  50. Fong, C. Y., Gauthaman, K., Cheyyatraivendran, S., Lin, H. D., Biswas, A., & Bongso, A. (2012). Human umbilical cord Wharton’s jelly stem cells and its conditioned medium support hematopoietic stem cell expansion ex vivo. Journal of Cellular Biochemistry, 113, 658–668.

    Article  PubMed  CAS  Google Scholar 

  51. Gauthaman, K., Fong, C. Y., Cheyyatraivendran, S., Biswas, A., Choolani, M., & Bongso, A. (2012). Human umbilical cord Wharton’s jelly stem cell (hWJSC) extracts inhibit cancer cell growth in vitro. Journal of Cellular Biochemistry, 113, 2027–2039.

    Article  PubMed  CAS  Google Scholar 

  52. Huang, Y. C., Parolini, O., La Rocca, G., & Deng, L. (2012). Umbilical cord versus bone marrow derived mesenchymal stromal cells. Stem Cells and Development, 21, 2900–2903.

    Article  PubMed  CAS  Google Scholar 

  53. Can, A., & Karahuseyinoglu, S. (2007). Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells, 25, 2886–2895.

    Article  PubMed  Google Scholar 

  54. Weiss, M. L., Anderson, C., Medicetty, S., et al. (2008). Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells, 26, 2865–2874.

    Article  PubMed  CAS  Google Scholar 

  55. Tipnis, S., Viswanathan, C., & Majumdar, A. S. (2010). Immunosuppressive properties of human umbilical cord-derived mesenchymal stem cells: role of B7-H1 and IDO. Immunology and Cell Biology, 88, 795–806.

    Article  PubMed  Google Scholar 

  56. Fan, C. G., Zhang, Q., & Zhou, J. (2011). Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Reviews and Reports, 7, 195–207.

    Article  PubMed  Google Scholar 

  57. Gauthaman, K., Venugopal, J. R., Fong, C. Y., Biswas, A., Ramakrishna, S., & Bongso, A. (2011). Osteogenic differentiation of human Wharton’s jelly stem cells on nanofibrous substrates in vitro. Tissue Engineering. Part A, 17, 71–81.

    Article  PubMed  CAS  Google Scholar 

  58. Fong, C. Y., Subramanian, A., Gauthaman, K., et al. (2012). Human umbilical cord Wharton’s jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Reviews and Reports, 8, 195–209.

    Article  PubMed  CAS  Google Scholar 

  59. Vidal, M. A., Walker, N. J., Napoli, E., & Borjesson, D. L. (2012). Evaluation of senescence in mesenchymal stem cells isolated from equine bone marrow, adipose tissue and umbilical cord tissue. Stem Cells and Development, 21, 273–283.

    Article  PubMed  Google Scholar 

  60. La Rocca, G., Anzalone, R., & Farina, F. (2009). The expression of CD68 in human umbilical cord mesenchymal stem cells: new evidences of presence in non-myeloid cell types. Scandinavian Journal of Immunology, 70, 161–162.

    Article  PubMed  Google Scholar 

  61. Fong, C. Y., Chak, L. L., Biswas, A., et al. (2011). Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Reviews and Reports, 7, 1–16.

    Article  PubMed  CAS  Google Scholar 

  62. Carlin, R., Davis, D., Weiss, M., Schultz, B., & Troyer, D. (2006). Expression of early transcription factors Oct-4, Sox-2 and nanog by porcine umbilical cord (PUC) matrix cells. Reproductive Biology and Endocrinology, 4, 1–13.

    Article  Google Scholar 

  63. Nekanti, U., Rao, V. B., Bahirvani, A. G., Jan, M., Totey, S., & Ta, M. (2010). Long-term expansion and pluripotent marker array analysis of Whartons jelly-derived mesenchymal stem cells. Stem Cells and Development, 19, 117–130.

    Article  PubMed  CAS  Google Scholar 

  64. Hoynowski, S. M., Fry, M. M., Gardner, B. M., et al. (2007). Charaterization and differentiation of equine umbilical cord derived matrix cells. Biochemical and Biophysical Research Communications, 362, 347–353.

    Article  PubMed  CAS  Google Scholar 

  65. Gauthaman, K., Fong, C. Y., Suganya, C. A., et al. (2012). Extra-embryonic human Wharton’s jelly stem cells do not induce tumorigenesis, unlike human embryonic stem cells. Reproductive Biomedicine Online, 24, 235–246.

    Article  PubMed  Google Scholar 

  66. Wang, Y., Han, Z. B., Ma, J., et al. (2012). A toxicity study of multiple-administration human umbilical cord mesenchymal stem cells in cynomolgus monkeys. Stem Cells and Development, 21, 1401–1408.

    Article  PubMed  Google Scholar 

  67. Fong, C. Y. (1993). Human tubal cell coculture: In vitro cell behaviour and use of conditioned medium for embryonic support. MSc. Thesis. Singapore: National University of Singapore.

  68. Fu, Y. S., Shih, Y. T., Cheng, Y. C., & Min, M. Y. (2004). Transformation of human umbilical mesenchymal cells into neurons in vitro. Journal of Biomedical Science, 11, 652–660.

    Article  PubMed  CAS  Google Scholar 

  69. Garzón, I., Pérez-Köhler, B., Garrido-Gómez, J., et al. (2012). Evaluation of the cell viability of human Wharton’s jelly stem cells for use in cell therapy. Tissue Engineering. Part C, Methods, 18, 408–419.

    Article  PubMed  Google Scholar 

  70. Ma, L., Feng, X. Y., Cui, B. L., et al. (2005). Human umbilical cord Wharton’s Jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Chinese Medical Journal, 118, 1987–1993.

    PubMed  CAS  Google Scholar 

  71. Mitchell, K. E., Weiss, M. L., Mitchell, B. M., et al. (2003). Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells, 21, 50–60.

    Article  PubMed  CAS  Google Scholar 

  72. Conconi, M. T., Burra, P., Di, L. R., Calore, C., et al. (2006). CD 105 (+) cells from Wharton’s Jelly show in vitro and in vivo myogenic differentiative potential. International Journal of Molecular Medicine, 18, 1089–1096.

    PubMed  CAS  Google Scholar 

  73. Wu, K. H., Zhou, B., Lu, S. H., et al. (2007). In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells. Journal of Cellular Biochemistry, 100, 608–616.

    Article  PubMed  CAS  Google Scholar 

  74. Chao, K. C., Chao, K. F., Fu, Y. S., & Liu, S. H. (2008). Islet-like clusters derived from mesenchymal stem cells in Wharton’s jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One, e1451, 1–9.

    Google Scholar 

  75. Anzalone, R., Lo Lacono, M., Loria, T., et al. (2011). Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: Extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of Type 1 diabetes. Stem Cell Reviews and Reports, 7, 342–363.

    Article  PubMed  Google Scholar 

  76. Medicetty, S., Bledsoe, A. R., Fahrenholtz, C. B., Troyer, D., & Weiss, M. L. (2004). Transplantation of pig stem cells into rat brain: proliferation during the first 8 weeks. Experimental Neurology, 190, 32–41.

    Article  PubMed  CAS  Google Scholar 

  77. Yang, D., Zhang, Z., Oldenberg, M., Ayala, M., & Zhang, S. C. (2008). Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in Parkinsonian rats. Stem Cells, 26, 55–63.

    Article  PubMed  CAS  Google Scholar 

  78. Deuse, T., Stubbendorff, M., Tang-Quan, K., et al. (2011). Immunogenecity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplantation, 20, 655–667.

    Article  PubMed  Google Scholar 

  79. Prasanna, S. J., Gopalakrishnan, D., Shankar, S. R., & Vasandan, A. B. (2010). Pro-inflammatory cytokines, IFNγ and TNFα, influence immune properties of human bone marrow and Wharton’s jelly mesenchymal stem cells differentially. PLoS One, 5, e9016.

    Article  PubMed  Google Scholar 

  80. De Coppi, P., Bartsch, G., Jr., Siddiqui, M. M., et al. (2007). Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology, 25, 100–106.

    Article  PubMed  Google Scholar 

  81. Illancheran, S., Moodley, Y., & Manuelpillai, U. (2009). Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta, 3, 2–10.

    Article  Google Scholar 

  82. Rachkatla, R. S., Marini, F., Weiss, M. L., Tamura, M., & Troyer, D. (2007). Development of human umbilical cord matrix stem cell-based gene therapy for experimental lung tumors. Cancer Gene Therapy, 14, 828–835.

    Article  Google Scholar 

  83. Ayuzawa, R., Doi, C., Rachakatla, R. S., et al. (2009). Naïve human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Letters, 280, 31–37.

    Article  PubMed  CAS  Google Scholar 

  84. Ganta, C., Chiyo, D., Ayuzawa, R., et al. (2009). Rat umbilical cord stem cells completely abolish rat mammary carcinomas with no evidence of metastasis or recurrence 100 days post-tumor cell inoculation. Cancer Research, 69, 1815–1820.

    Article  PubMed  CAS  Google Scholar 

  85. Maurya, D. K., Doi, C., Kawabata, A., et al. (2010). Therapy with un-engineered naïve rat umbilical cord matrix stem cells markedly inhibits growth of murine lung adenocarcinoma. BMC Cancer, 10, 590–601.

    Article  PubMed  Google Scholar 

  86. Sun, B., Yu, K. R., Bhandari, D. R., Jung, J. W., Kang, S. K., & Kang, K. S. (2010). Human umbilical cord blood mesenchymal stem cell-derived extracellular matrix prohibits metastatic cancer cell MDA-MB-231 proliferation. Cancer Letters, 296, 178–185.

    Article  PubMed  CAS  Google Scholar 

  87. Chao, K. C., Yang, H. T., & Chen, M. W. (2011). Human umbilical cord mesenchymal stem cells suppress breast cancer tumorogenesis through direct cell-cell contact and internalization. Journal of Cellular and Molecular Medicine, 16, 1803–1815.

    Article  Google Scholar 

  88. Ma, Y., Hao, X., Zhang, S., & Zhang, J. (2012). The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast Cancer Research and Treatment, 133, 473–485.

    Article  PubMed  CAS  Google Scholar 

  89. Chamberlain, G., Fox, J., Ashton, B., & Middleton, J. (2007). Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 25, 2739–2749.

    Article  PubMed  CAS  Google Scholar 

  90. Håkelien, A. M., & Collas, P. (2002). Novel approaches to transdifferentiation. Cloning and Stem Cells, 4, 379–387.

    Article  PubMed  Google Scholar 

  91. Taranger, C. K., Noer, A., Sørensen, A. L., Håkelien, A. M., Boquest, A. C., & Collas, P. (2005). Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Molecular Biology of the Cell, 16, 5719–5735.

    Article  PubMed  CAS  Google Scholar 

  92. Friedman, R., Betancur, M., Boissel, L., Tuncer, H., Cetrulo, C., & Klingemann, H. (2007). Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biology of Blood and Bone Marrow Transplantation, 13, 1477–1486.

    Article  Google Scholar 

  93. Bakhshi, T., Zabriskie, R. C., Bodies, K., Ramin, S., Laura, A., & Paganessi, L. A. (2008). Mesenchymal stem cells from the Wharton’s jelly of umbilical cord segments provide stromal support for the maintenance of cord blood hematopoietic stem cells during long-term ex vivo culture. Transfusion, 48, 2638–2644.

    Article  PubMed  Google Scholar 

  94. Matsuzuka, T., Rachakatla, R. S., Doi, C., et al. (2010). Human umbilical cord matrix-derived stem cells expressing interferon-β gene significantly attenuate bronchioloalveolar carcinoma xenografts in SCID mice. Lung Cancer, 70, 28–36.

    Article  PubMed  Google Scholar 

  95. Subramanian, A., Gan, S. U., Ngo, K. S., et al. (2012). Human umbilical cord Wharton’s jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells. Journal of Cellular Biochemistry, 113, 1886–1895.

    Article  PubMed  CAS  Google Scholar 

  96. Magin, A. S., Korfer, N. R., Partenheimer, H., Iange, C., Zander, A., & Noll, T. (2009). Primary cells as feeder cells for coculture expansion of human hematopoietic stem cells from umbilical cord blood-a comparative study. Stem Cells and Development, 18, 173–186.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors’ studies reported in this review were carried out under grant numbers R-174-000-131-213, R-174-000-122-112 and R-174-000-129-112. The financial support from the National Medical Research Council (NMRC) Singapore and the Academic Research Fund (AcRF) for these grants is gratefully acknowledged.

Statement of conflicts of interest

Both authors have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariff Bongso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bongso, A., Fong, CY. The Therapeutic Potential, Challenges and Future Clinical Directions of Stem Cells from the Wharton’s Jelly of the Human Umbilical Cord. Stem Cell Rev and Rep 9, 226–240 (2013). https://doi.org/10.1007/s12015-012-9418-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-012-9418-z

Keywords

Navigation