Skip to main content

Advertisement

Log in

Genetic Control of Intestinal Stem Cell Specification and Development: A Comparative View

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Stem cells of the adult vertebrate intestine (ISCs) are responsible for the continuous replacement of intestinal cells, but also serve as site of origin of intestinal neoplasms. The interaction between multiple signaling pathways, including Wnt/Wg, Shh/Hh, BMP, and Notch, orchestrate mitosis, motility, and differentiation of ISCs. Many fundamental questions of how these pathways carry out their function remain unanswered. One approach to gain more insight is to look at the development of stem cells, to analyze the “programming” process which these cells undergo as they emerge from the large populations of embryonic progenitors. This review intends to summarize pertinent data on vertebrate intestinal stem cell biology, to then take a closer look at recent studies of intestinal stem cell development in Drosophila. Here, stem cell pools and their niche environment consist of relatively small numbers of cells, and questions concerning the pattern of cell division, niche-stem cell contacts, or differentiation can be addressed at the single cell level. Likewise, it is possible to analyze the emergence of stem cells during development more easily than in vertebrate systems: where in the embryo do stem cells arise, what structures in their environment do they interact with, and what signaling pathways are active sequentially as a result of these interactions. Given the high degree of conservation among genetic mechanisms controlling stem cell behavior in all animals, findings in Drosophila will provide answers that inform research in the vertebrate stem cell field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Martinez-Agosto, J. A., Mikkola, H. K., Hartenstein, V., & Banerjee, U. (2007). The hematopoietic stem cell and its niche: a comparative view. Genes & Development, 21(23), 3044–60.

    Article  CAS  Google Scholar 

  2. Xie, T., Kawase, E., Kirilly, D., & Wong, M. D. (2005). Intimate relationships with their neighbors: tales of stem cells in Drosophila reproductive systems. Developmental Dynamics, 232(3), 775–90.

    Article  PubMed  CAS  Google Scholar 

  3. Fuller, M. T., & Spradling, A. C. (2007). Male and female Drosophila germline stem cells: two versions of immortality. Science, 316(5823), 402–4.

    Article  PubMed  CAS  Google Scholar 

  4. Arai, F., & Suda, T. (2007). Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche. Annals of the New York Academy of Sciences, 1106, 41–53.

    Article  PubMed  CAS  Google Scholar 

  5. Levesque, J. P., Helwani, F. M., & Winkler, I. G. (2010). The endosteal 'osteoblastic' niche and its role in hematopoietic stem cell homing and mobilization. Leukemia, 24(12), 1979–92.

    Article  PubMed  Google Scholar 

  6. Montuenga, L. M., Guembe, L., Burrell, M. A., et al. (2003). The diffuse endocrine system: from embryogenesis to carcinogenesis. Progress in Histochemistry and Cytochemistry, 38(2), 155–272.

    Article  PubMed  CAS  Google Scholar 

  7. Li, L., & Clevers, H. (2010). Coexistence of quiescent and active adult stem cells in mammals. Science, 327(5965), 542–5.

    Article  PubMed  CAS  Google Scholar 

  8. Tian, H., Biehs, B., Warming, S., et al. (2011). A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature, 478(7368), 255–9.

    Article  PubMed  CAS  Google Scholar 

  9. Crosnier, C., Stamataki, D., & Lewis, J. (2006). Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nature Reviews Genetics, 7(5), 349–59.

    Article  PubMed  CAS  Google Scholar 

  10. Scoville, D. H., Sato, T., He, X. C., & Li, L. (2008). Current view: intestinal stem cells and signaling. Gastroenterology, 134(3), 849–64.

    Article  PubMed  CAS  Google Scholar 

  11. Bjerknes, M., & Cheng, H. (2006). Neurogenin 3 and the enteroendocrine cell lineage in the adult mouse small intestinal epithelium. Developments in Biologicals, 300(2), 722–35.

    Article  CAS  Google Scholar 

  12. Powell, D. W., Mifflin, R. C., Valentich, J. D., Crowe, S. E., Saada, J. I., & West, A. B. (1999). Myofibroblasts. II. Intestinal subepithelial myofibroblasts. American Journal of Physiology, 277(2 Pt 1), C183–201.

    PubMed  CAS  Google Scholar 

  13. Yen, T. H., & Wright, N. A. (2006). The gastrointestinal tract stem cell niche. Stem Cell Reviews, 2(3), 203–12.

    Article  PubMed  CAS  Google Scholar 

  14. McLin, V. A., Henning, S. J., & Jamrich, M. (2009). The role of the visceral mesoderm in the development of the gastrointestinal tract. Gastroenterology, 136(7), 2074–91.

    Article  PubMed  CAS  Google Scholar 

  15. Shaker, A., & Rubin, D. C. (2010). Intestinal stem cells and epithelial-mesenchymal interactions in the crypt and stem cell niche. Translational Research, 156(3), 180–7.

    Article  PubMed  CAS  Google Scholar 

  16. Powell, D. W., Pinchuk, I. V., Saada, J. I., Chen, X., & Mifflin, R. C. (2011). Mesenchymal cells of the intestinal lamina propria. Annual Review of Physiology, 73, 213–37.

    Article  PubMed  CAS  Google Scholar 

  17. Sato, T., van Es, J. H., Snippert, H. J., et al. (2011). Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 469(7330), 415–8.

    Article  PubMed  CAS  Google Scholar 

  18. Haegebarth, A., & Clevers, H. (2009). Wnt signaling, lgr5, and stem cells in the intestine and skin. American Journal of Pathology, 174(3), 715–21.

    Article  PubMed  CAS  Google Scholar 

  19. Yeung, T. M., Chia, L. A., Kosinski, C. M., & Kuo, C. J. (2011). Regulation of self-renewal and differentiation by the intestinal stem cell niche. Cellular and Molecular Life Sciences, 68(15), 2513–23.

    Article  PubMed  CAS  Google Scholar 

  20. Gregorieff, A., Pinto, D., Begthel, H., Destree, O., Kielman, M., & Clevers, H. (2005). Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology, 129(2), 626–38.

    PubMed  CAS  Google Scholar 

  21. Lin, G., Xu, N., & Xi, R. (2008). Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature, 455(7216), 1119–23.

    Article  PubMed  CAS  Google Scholar 

  22. He, X. C., Zhang, J., Tong, W. G., et al. (2004). BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nature Genetics, 36(10), 1117–21.

    Article  PubMed  CAS  Google Scholar 

  23. Jensen, J., Pedersen, E. E., Galante, P., et al. (2000). Control of endodermal endocrine development by Hes-1. Nature Genetics, 24(1), 36–44.

    Article  PubMed  CAS  Google Scholar 

  24. Crosnier, C., Vargesson, N., Gschmeissner, S., Ariza-McNaughton, L., Morrison, A., & Lewis, J. (2005). Delta-Notch signalling controls commitment to a secretory fate in the zebrafish intestine. Development, 132(5), 1093–104.

    Article  PubMed  CAS  Google Scholar 

  25. van Es, J. H., van Gijn, M. E., Riccio, O., et al. (2005). Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature, 435(7044), 959–63.

    Article  PubMed  Google Scholar 

  26. Fre, S., Bardin, A., Robine, S., & Louvard, D. (2011). Notch signaling in intestinal homeostasis across species: the cases of Drosophila, Zebrafish and the mouse. Experimental Cell Research, 317(19), 2740–7.

    Article  PubMed  CAS  Google Scholar 

  27. Schonhoff, S. E., Giel-Moloney, M., & Leiter, A. B. (2004). Minireview: Development and differentiation of gut endocrine cells. Endocrinology, 145(6), 2639–44.

    Article  PubMed  CAS  Google Scholar 

  28. Lee, C. S., & Kaestner, K. H. (2004). Clinical endocrinology and metabolism. Development of gut endocrine cells. Best Practice & Research. Clinical Endocrinology & Metabolism, 18(4), 453–62.

    Article  CAS  Google Scholar 

  29. Hartenstein, V. (2006). The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. Journal of Endocrinology, 190(3), 555–70.

    Article  PubMed  CAS  Google Scholar 

  30. Henning, S. J., Rubin, D. C., & Shulman, R. J. (1994). Ontogeny of the intestinal mucosa. In L. R. Johnson (Ed.), Physiology of the gastrointestinal tract (pp. 571–610). New York, NY: Raven.

    Google Scholar 

  31. Mathan, M., Moxey, P. C., & Trier, J. S. (1976). Morphogenesis of fetal rat duodenal villi. The American Journal of Anatomy, 146(1), 73–92.

    Article  PubMed  CAS  Google Scholar 

  32. Madara, J. L., Neutra, M. R., & Trier, J. S. (1981). Junctional complexes in fetal rat small intestine during morphogenesis. Developments in Biologicals, 86(1), 170–8.

    Article  CAS  Google Scholar 

  33. Kim, B. M., Mao, J., Taketo, M. M., & Shivdasani, R. A. (2007). Phases of canonical Wnt signaling during the development of mouse intestinal epithelium. Gastroenterology, 133(2), 529–38.

    Article  PubMed  CAS  Google Scholar 

  34. Ishizuya-Oka, A., & Shi, Y. B. (2007). Regulation of adult intestinal epithelial stem cell development by thyroid hormone during Xenopus laevis metamorphosis. Developmental Dynamics, 236(12), 3358–68.

    Article  PubMed  CAS  Google Scholar 

  35. Ramalho-Santos, M., Melton, D. A., & McMahon, A. P. (2000). Hedgehog signals regulate multiple aspects of gastrointestinal development. Development, 127(12), 2763–72.

    PubMed  CAS  Google Scholar 

  36. Madison, B. B., Braunstein, K., Kuizon, E., Portman, K., Qiao, X. T., & Gumucio, D. L. (2005). Epithelial hedgehog signals pattern the intestinal crypt-villus axis. Development, 132(2), 279–89.

    Article  PubMed  CAS  Google Scholar 

  37. Mao, J., Kim, B. M., Rajurkar, M., Shivdasani, R. A., & McMahon, A. P. (2010). Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development, 137(10), 1721–9.

    Article  PubMed  CAS  Google Scholar 

  38. Batts, L. E., Polk, D. B., Dubois, R. N., & Kulessa, H. (2006). Bmp signaling is required for intestinal growth and morphogenesis. Developmental Dynamics, 235(6), 1563–70.

    Article  PubMed  CAS  Google Scholar 

  39. Torihashi, S., Hattori, T., Hasegawa, H., Kurahashi, M., Ogaeri, T., & Fujimoto, T. (2009). The expression and crucial roles of BMP signaling in development of smooth muscle progenitor cells in the mouse embryonic gut. Differentiation, 77(3), 277–89.

    Article  PubMed  CAS  Google Scholar 

  40. Skaer, H. (1993). The alimentary canal. In M. Bate & A. Martinez-Arias (Eds.), The development of Drosophila melanogaster (pp. 941–1012). Plainview, NY: Cold Spring Habor Laboratory Press.

    Google Scholar 

  41. Dubreuil, R. R. (2004). Copper cells and stomach acid secretion in the Drosophila midgut. The International Journal of Biochemistry & Cell Biology, 36(5), 745–52.

    Article  CAS  Google Scholar 

  42. Veenstra, J. A., Agricola, H. J., & Sellami, A. (2008). Regulatory peptides in fruit fly midgut. Cell and Tissue Research, 334(3), 499–516.

    Article  PubMed  CAS  Google Scholar 

  43. Veenstra, J. A. (2009). Peptidergic paracrine and endocrine cells in the midgut of the fruit fly maggot. Cell and Tissue Research, 336(2), 309–23.

    Article  PubMed  CAS  Google Scholar 

  44. Hartenstein, V., Takashima, S., & Adams, K. L. (2010). Conserved genetic pathways controlling the development of the diffuse endocrine system in vertebrates and Drosophila. General and Comparative Endocrinology, 166(3), 462–9.

    Article  PubMed  CAS  Google Scholar 

  45. Takashima, S., Adams, K. L., Ortiz, P. A., et al. (2011). Development of the Drosophila entero-endocrine lineage and its specification by the Notch signaling pathway. Developments in Biologicals, 353(2), 161–72.

    Article  CAS  Google Scholar 

  46. Micchelli, C. A., & Perrimon, N. (2006). Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature, 439(7075), 475–9.

    Article  PubMed  CAS  Google Scholar 

  47. Ohlstein, B., & Spradling, A. (2006). The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature, 439(7075), 470–4.

    Article  PubMed  CAS  Google Scholar 

  48. Singh, S. R., Liu, W., & Hou, S. X. (2007). The adult Drosophila malpighian tubules are maintained by multipotent stem cells. Cell Stem Cell, 1(2), 191–203.

    Article  PubMed  CAS  Google Scholar 

  49. Takashima, S., Mkrtchyan, M., Younossi-Hartenstein, A., Merriam, J. R., & Hartenstein, V. (2008). The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling. Nature, 454(7204), 651–5.

    Article  PubMed  CAS  Google Scholar 

  50. Singh, S. R., Zeng, X., Zheng, Z., & Hou, S. X. (2011). The adult Drosophila gastric and stomach organs are maintained by a multipotent stem cell pool at the foregut/midgut junction in the cardia (proventriculus). Cell Cycle, 10(7), 1109–20.

    Article  PubMed  CAS  Google Scholar 

  51. Fox, D. T., & Spradling, A. C. (2009). The Drosophila hindgut lacks constitutively active adult stem cells but proliferates in response to tissue damage. Cell Stem Cell, 5(3), 290–7.

    Article  PubMed  CAS  Google Scholar 

  52. Lee, W. C., Beebe, K., Sudmeier, L., & Micchelli, C. A. (2009). Adenomatous polyposis coli regulates Drosophila intestinal stem cell proliferation. Development, 136(13), 2255–64.

    Article  PubMed  CAS  Google Scholar 

  53. Xu, N., Wang, S. Q., Tan, D., Gao, Y., Lin, G., & Xi, R. (2011). EGFR, Wingless and JAK/STAT signaling cooperatively maintain Drosophila intestinal stem cells. Developments in Biologicals, 354(1), 31–43.

    Article  CAS  Google Scholar 

  54. Ohlstein, B., & Spradling, A. (2007). Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science, 315(5814), 988–92.

    Article  PubMed  CAS  Google Scholar 

  55. Fre, S., Huyghe, M., Mourikis, P., Robine, S., Louvard, D., & Artavanis-Tsakonas, S. (2005). Notch signals control the fate of immature progenitor cells in the intestine. Nature, 435(7044), 964–8.

    Article  PubMed  CAS  Google Scholar 

  56. Wang, P., & Hou, S. X. (2010). Regulation of intestinal stem cells in mammals and Drosophila. Journal of Cellular Physiology, 222(1), 33–7.

    Article  PubMed  CAS  Google Scholar 

  57. Bowman, S. K., Rolland, V., Betschinger, J., Kinsey, K. A., Emery, G., & Knoblich, J. A. (2008). The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Developmental Cell, 14(4), 535–46.

    Article  PubMed  CAS  Google Scholar 

  58. Maeda, K., Takemura, M., Umemori, M., & Adachi-Yamada, T. (2008). E-cadherin prolongs the moment for interaction between intestinal stem cell and its progenitor cell to ensure Notch signaling in adult Drosophila midgut. Genes to Cells, 13(12), 1219–27.

    Article  PubMed  CAS  Google Scholar 

  59. Jiang, H., Grenley, M. O., Bravo, M. J., Blumhagen, R. Z., & Edgar, B. A. (2011). EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell, 8(1), 84–95.

    Article  PubMed  CAS  Google Scholar 

  60. Jiang, H., Patel, P. H., Kohlmaier, A., Grenley, M. O., McEwen, D. G., & Edgar, B. A. (2009). Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell, 137(7), 1343–55.

    Article  PubMed  Google Scholar 

  61. Liu, W., Singh, S. R., & Hou, S. X. (2010). JAK-STAT is restrained by Notch to control cell proliferation of the Drosophila intestinal stem cells. Journal of Cellular Biochemistry, 109(5), 992–9.

    PubMed  CAS  Google Scholar 

  62. Buchon, N., Broderick, N. A., Chakrabarti, S., & Lemaitre, B. (2009). Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes & Development, 23(19), 2333–44.

    Article  CAS  Google Scholar 

  63. Cronin, S. J., Nehme, N. T., Limmer, S., et al. (2009). Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science, 325(5938), 340–3.

    Article  PubMed  CAS  Google Scholar 

  64. Shaw, R. L., Kohlmaier, A., Polesello, C., Veelken, C., Edgar, B. A., & Tapon, N. (2010). The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development, 137(24), 4147–58.

    Article  PubMed  CAS  Google Scholar 

  65. Ren, F., Wang, B., Yue, T., Yun, E. Y., Ip, Y. T., & Jiang, J. (2010). Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proceedings of the National Academy of Sciences of the United States of America, 107(49), 21064–9.

    Article  PubMed  CAS  Google Scholar 

  66. Karpowicz, P., Perez, J., & Perrimon, N. (2010). The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development, 137(24), 4135–45.

    Article  PubMed  CAS  Google Scholar 

  67. Campos-Ortega, J. A., & Hartenstein, V. (1985). The Embryonic development of Drosophila melanogaster. Berlin: Springer.

    Google Scholar 

  68. Tepass, U., & Hartenstein, V. (1994). Epithelium formation in the Drosophila midgut depends on the interaction of endoderm and mesoderm. Development, 120(3), 579–90.

    PubMed  CAS  Google Scholar 

  69. Jiang, H., & Edgar, B. A. (2009). EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. Development, 136(3), 483–93.

    Article  PubMed  CAS  Google Scholar 

  70. Mathur, D., Bost, A., Driver, I., & Ohlstein, B. (2010). A transient niche regulates the specification of Drosophila intestinal stem cells. Science, 327(5962), 210–3.

    Article  PubMed  CAS  Google Scholar 

  71. Takashima, S., Younossi-Hartenstein, A., Ortiz, P. A., & Hartenstein, V. (2011). A novel tissue in an established model system: the Drosophila pupal midgut. Development Genes and Evolution, 221(2), 69–81.

    Article  PubMed  Google Scholar 

  72. Robertson, C. W. (1936). The metamorphosis of Drosophila melanogaster, including an accurately timed account of the principal morphological changes. Journal of Morphology, 59(2), 351–99.

    Article  Google Scholar 

  73. Takashima S, Aghajanian P, Paul M, Younossi-Hartenstein A, Hartenstein V. Trans-germ layer migration of Drosophila intestinal stem cells at the developing midgut-hindgut boundary (submitted)

  74. Klapper, R. (2000). The longitudinal visceral musculature of Drosophila melanogaster persists through metamorphosis. Mechanisms of Development, 95(1–2), 47–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Hartenstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takashima, S., Hartenstein, V. Genetic Control of Intestinal Stem Cell Specification and Development: A Comparative View. Stem Cell Rev and Rep 8, 597–608 (2012). https://doi.org/10.1007/s12015-012-9351-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-012-9351-1

Keywords

Navigation