Skip to main content
Log in

The Effects of Nuclear Reprogramming on Mitochondrial DNA Replication

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Undifferentiated mouse embryonic stem cells (ESCs) possess low numbers of mitochondrial DNA (mtDNA), which encodes key subunits associated with the generation of ATP through oxidative phosphorylation (OXPHOS). As ESCs differentiate, mtDNA copy number is regulated by the nuclear-encoded mtDNA replication factors, which initiate a major replication event on Day 6 of differentiation. Here, we examined mtDNA replication events in somatic cells reprogrammed to pluripotency, namely somatic cell-ES (SC-ES), somatic cell nuclear transfer ES (NT-ES) and induced pluripotent stem (iPS) cells, all at low-passage. MtDNA copy number in undifferentiated iPS cells was similar to ESCs whilst SC-ES and NT-ES cells had significantly increased levels, which correlated positively and negatively with Nanog and Sox2 expression, respectively. During pluripotency and differentiation, the expression of the mtDNA-specific replication factors, PolgA and Peo1, were differentially expressed in iPS and SC-ES cells when compared to ESCs. Throughout differentiation, reprogrammed somatic cells were unable to accumulate mtDNA copy number, characteristic of ESCs, especially on Day 6. In addition, iPS and SC-ES cells were also unable to regulate ATP content in a manner similar to differentiating ESCs prior to Day 14. The treatment of reprogrammed somatic cells with an inhibitor of de novo DNA methylation, 5-Azacytidine, prior to differentiation enabled iPS cells, but not SC-ES and NT-ES cells, to accumulate mtDNA copies per cell in a manner similar to ESCs. These data demonstrate that the reprogramming process disrupts the regulation of mtDNA replication during pluripotency but this can be re-established through the use of epigenetic modifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., et al. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290, 457–465.

    CAS  PubMed  Google Scholar 

  2. Pfeiffer, T., Schuster, S., & Bonhoeffer, S. (2001). Cooperation and competition in the evolution of ATP-producing pathways. Science, 292, 504–507.

    CAS  PubMed  Google Scholar 

  3. Fernandez-Vizarra, E., Tiranti, V., & Zeviani, M. (2009). Assembly of the oxidative phosphorylation system in humans: what we have learned by studying its defects. Biochimica et Biophysica Acta, 1793, 200–211.

    CAS  PubMed  Google Scholar 

  4. Lazarou, M., Thorburn, D. R., Ryan, M. T., & McKenzie, M. (2009). Assembly of mitochondrial complex I and defects in disease. Biochimica et Biophysica Acta, 1793, 78–88.

    CAS  PubMed  Google Scholar 

  5. McKenzie, M., & Ryan, M. T. (2010). Assembly factors of human mitochondrial complex I and their defects in disease. IUBMB Life, 62, 497–502.

    CAS  PubMed  Google Scholar 

  6. Wallace, D. C. (1999). Mitochondrial diseases in man and mouse. Science, 283, 1482–1488.

    CAS  PubMed  Google Scholar 

  7. Smeitink, J., van den Heuvel, L., & DiMauro, S. (2001). The genetics and pathology of oxidative phosphorylation. Nature Reviews Genetics, 2, 342–352.

    CAS  PubMed  Google Scholar 

  8. Clayton, D. A. (1982). Replication of animal mitochondrial DNA. Cell, 28, 693–705.

    CAS  PubMed  Google Scholar 

  9. Korhonen, J. A., Gaspari, M., & Falkenberg, M. (2003). TWINKLE Has 5′ -> 3′ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. Journal of Biological Chemistry, 278, 48627–48632.

    CAS  Google Scholar 

  10. Lazarou, M., McKenzie, M., Ohtake, A., Thorburn, D. R., & Ryan, M. T. (2007). Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Molecular and Cellular Biology, 27, 4228–4237.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Spikings, E. C., Alderson, J., & St John, J. C. (2007). Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biology of Reproduction, 76, 327–335.

    CAS  PubMed  Google Scholar 

  12. Thundathil, J., Filion, F., & Smith, L. C. (2005). Molecular control of mitochondrial function in preimplantation mouse embryos. Molecular Reproduction and Development, 71, 405–413.

    CAS  PubMed  Google Scholar 

  13. Cao, L., Shitara, H., Horii, T., Nagao, Y., Imai, H., et al. (2007). The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nature Genetics, 39, 386–390.

    CAS  PubMed  Google Scholar 

  14. Facucho-Oliveira, J. M., Alderson, J., Spikings, E. C., Egginton, S., & St John, J. C. (2007). Mitochondrial DNA replication during differentiation of murine embryonic stem cells. Journal of Cell Science, 120, 4025–4034.

    CAS  PubMed  Google Scholar 

  15. Miller, F. J., Rosenfeldt, F. L., Zhang, C., Linnane, A. W., & Nagley, P. (2003). Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Research, 31, e61.

    PubMed  PubMed Central  Google Scholar 

  16. Bowles, E. J., Lee, J. H., Alberio, R., Lloyd, R. E., Stekel, D., et al. (2007). Contrasting effects of in vitro fertilization and nuclear transfer on the expression of mtDNA replication factors. Genetics, 176, 1511–1526.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Leahy, A., Xiong, J. W., Kuhnert, F., & Stuhlmann, H. (1999). Use of developmental marker genes to define temporal and spatial patterns of differentiation during embryoid body formation. The Journal of Experimental Zoology, 284, 67–81.

    CAS  PubMed  Google Scholar 

  18. Hance, N., Ekstrand, M. I., & Trifunovic, A. (2005). Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis. Human Molecular Genetics, 14, 1775–1783.

    CAS  PubMed  Google Scholar 

  19. St John, J. C., Facucho-Oliveira, J., Jiang, Y., Kelly, R., & Salah, R. (2010). Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Human Reproductive Update, 16, 488–509.

    CAS  Google Scholar 

  20. Kelly, R. D., & St John, J. C. (2010). Role of mitochondrial DNA replication during differentiation of reprogrammed stem cells. International Journal of Developmental Biology, 54, 1659–1670.

    CAS  Google Scholar 

  21. Facucho-Oliveira, J. M., & St John, J. C. (2009). The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Reviews and Reports, 5, 140–158.

    CAS  PubMed  Google Scholar 

  22. Cowan, C. A., Atienza, J., Melton, D. A., & Eggan, K. (2005). Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science, 309, 1369–1373.

    CAS  PubMed  Google Scholar 

  23. Yu, J., Vodyanik, M. A., He, P., Slukvin, I. I., & Thomson, J. A. (2006). Human embryonic stem cells reprogram myeloid precursors following cell-cell fusion. Stem Cells, 24, 168–176.

    PubMed  Google Scholar 

  24. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    CAS  PubMed  Google Scholar 

  25. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    CAS  PubMed  Google Scholar 

  26. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385, 810–813.

    CAS  PubMed  Google Scholar 

  27. Blelloch, R., Wang, Z., Meissner, A., Pollard, S., Smith, A., et al. (2006). Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells, 24, 2007–2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., et al. (2001). Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proceedings of the National Academy of Sciences of the United States of America, 98, 13734–13738.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gurdon, J. B., & Melton, D. A. (2008). Nuclear reprogramming in cells. Science, 322, 1811–1815.

    CAS  PubMed  Google Scholar 

  30. Lloyd, R. E., Lee, J. H., Alberio, R., Bowles, E. J., Ramalho-Santos, J., et al. (2006). Aberrant nucleo-cytoplasmic cross-talk results in donor cell mtDNA persistence in cloned embryos. Genetics, 172, 2515–2527.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Brambrink, T., Hochedlinger, K., Bell, G., & Jaenisch, R. (2006). ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proceedings of the National Academy of Sciences of the United States of America, 103, 933–938.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., et al. (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467, 285–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Feng, Q., Lu, S. J., Klimanskaya, I., Gomes, I., Kim, D., et al. (2010). Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells, 28, 704–712.

    PubMed  Google Scholar 

  34. Hu, B. Y., Weick, J. P., Yu, J., Ma, L. X., Zhang, X. Q., et al. (2010). Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proceedings of the National Academy of Sciences of the United States of America, 107, 4335–4340.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chin, M. H., Mason, M. J., Xie, W., Volinia, S., Singer, M., et al. (2009). Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell, 5, 111–123.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hanna, J., Saha, K., Pando, B., van Zon, J., Lengner, C. J., et al. (2009). Direct cell reprogramming is a stochastic process amenable to acceleration. Nature, 462, 595–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Polo, J. M., Liu, S., Figueroa, M. E., Kulalert, W., Eminli, S., et al. (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 28, 848–855.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Stadtfeld, M., Apostolou, E., Akutsu, H., Fukuda, A., Follett, P., et al. (2010). Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature, 465, 175–181.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mikkelsen, T. S., Hanna, J., Zhang, X., Ku, M., Wernig, M., et al. (2008). Dissecting direct reprogramming through integrative genomic analysis. Nature, 454, 49–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sumer, H., Jones, K. L., Liu, J., Heffernan, C., Tat, P. A., et al. (2009). Reprogramming of somatic cells after fusion with iPS and ntES cells. Stem Cells and Development, 19, 239–246.

    Google Scholar 

  41. Sumer, H., Nicholls, C., Pinto, A. R., Indraharan, D., Liu, J., et al. (2010). Chromosomal and telomeric reprogramming following ES-somatic cell fusion. Chromosoma, 119, 167–176.

    PubMed  Google Scholar 

  42. Sumer, H., Jones, K. L., Liu, J., Rollo, B. N., van Boxtel, A. L., et al. (2009). Transcriptional changes in somatic cells recovered from embryonic stem-somatic heterokaryons. Stem Cells and Development, 18, 1361–1368.

    CAS  PubMed  Google Scholar 

  43. Munsie, M. J., Michalska, A. E., O'Brien, C. M., Trounson, A. O., Pera, M. F., et al. (2000). Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Current Biology, 10, 989–992.

    CAS  PubMed  Google Scholar 

  44. Keller, G. M. (1995). In vitro differentiation of embryonic stem cells. Current Opinion in Cell Biology, 7, 862–869.

    CAS  PubMed  Google Scholar 

  45. McKenzie, M., Lazarou, M., & Ryan, M. T. (2009). Chapter 18 analysis of respiratory chain complex assembly with radiolabeled nuclear- and mitochondrial-encoded subunits. Methods in Enzymology, 456, 321–339.

    CAS  PubMed  Google Scholar 

  46. McKenzie, M., Trounce, I. A., Cassar, C. A., & Pinkert, C. A. (2004). Production of homoplasmic xenomitochondrial mice. Proceedings of the National Academy of Sciences of the United States of America, 101, 1685–1690.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Trounce, I., & Wallace, D. C. (1996). Production of transmitochondrial mouse cell lines by cybrid rescue of rhodamine-6G pre-treated L-cells. Somatic Cell and Molecular Genetics, 22, 81–85.

    CAS  PubMed  Google Scholar 

  48. Silva, J., Chambers, I., Pollard, S., & Smith, A. (2006). Nanog promotes transfer of pluripotency after cell fusion. Nature, 441, 997–1001.

    CAS  PubMed  Google Scholar 

  49. Silva, J., Nichols, J., Theunissen, T. W., Guo, G., van Oosten, A. L., et al. (2009). Nanog is the gateway to the pluripotent ground state. Cell, 138, 722–737.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Niwa, H., Miyazaki, J., & Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 24, 372–376.

    CAS  PubMed  Google Scholar 

  51. Chen, X., Xu, H., Yuan, P., Fang, F., Huss, M., et al. (2008). Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 133, 1106–1117.

    CAS  PubMed  Google Scholar 

  52. Hanna, J. H., Saha, K., & Jaenisch, R. (2010). Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell, 143, 508–525.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Todd, L. R., Damin, M. N., Gomathinayagam, R., Horn, S. R., Means, A. R., et al. (2010). Growth factor erv1-like modulates Drp1 to preserve mitochondrial dynamics and function in mouse embryonic stem cells. Molecular Biology of the Cell, 21, 1225–1236.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Rae, P. C., Kelly, R. D., Egginton, S., & St John, J. C. (2011). Angiogenic potential of endothelial progenitor cells and embryonic stem cells. Vascular Cell, 3, 11.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wai, T., Teoli, D., & Shoubridge, E. A. (2008). The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nature Genetics, 40, 1484–1488.

    CAS  PubMed  Google Scholar 

  56. Surani, M. A., Durcova-Hills, G., Hajkova, P., Hayashi, K., & Tee, W. W. (2008). Germ line, stem cells, and epigenetic reprogramming. Cold Spring Harbour Symposia on Quantative Biology, 73, 9–15.

    CAS  Google Scholar 

  57. Kang, J., Shakya, A., & Tantin, D. (2009). Stem cells, stress, metabolism and cancer: a drama in two Octs. Trends in Biochemical Sciences, 34, 491–499.

    CAS  PubMed  Google Scholar 

  58. Chambers, I., Silva, J., Colby, D., Nichols, J., Nijmeijer, B., et al. (2007). Nanog safeguards pluripotency and mediates germline development. Nature, 450, 1230–1234.

    CAS  PubMed  Google Scholar 

  59. Maldonado-Saldivia, J., van den Bergen, J., Krouskos, M., Gilchrist, M., Lee, C., et al. (2007). Dpp a2 and Dppa4 are closely linked SAP motif genes restricted to pluripotent cells and the germ line. Stem Cells, 25, 19–28.

    CAS  PubMed  Google Scholar 

  60. Kehler, J., Tolkunova, E., Koschorz, B., Pesce, M., Gentile, L., et al. (2004). Oct4 is required for primordial germ cell survival. EMBO Reports, 5, 1078–1083.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Thomson, M., Liu, S. J., Zou, L. N., Smith, Z., Meissner, A., et al. (2011). Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell, 145, 875–889.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Larsson, N. G., Wang, J., Wilhelmsson, H., Oldfors, A., Rustin, P., et al. (1998). Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nature Genetics, 18, 231–236.

    CAS  PubMed  Google Scholar 

  63. Larsson, N. G., Oldfors, A., Holme, E., & Clayton, D. A. (1994). Low levels of mitochondrial transcription factor A in mitochondrial DNA depletion. Biochemical and Biophysical Research Communications, 200, 1374–1381.

    CAS  PubMed  Google Scholar 

  64. Poulton, J., Morten, K., Freeman-Emmerson, C., Potter, C., Sewry, C., et al. (1994). Deficiency of the human mitochondrial transcription factor h-mtTFA in infantile mitochondrial myopathy is associated with mtDNA depletion. Human Molecular Genetics, 3, 1763–1769.

    CAS  PubMed  Google Scholar 

  65. Bhutani, N., Brady, J. J., Damian, M., Sacco, A., Corbel, S. Y., et al. (2010). Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature, 463, 1042–1047.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Deng, W. (2010). AID in reprogramming: quick and efficient: identification of a key enzyme called AID, and its activity in DNA demethylation, may help to overcome a pivotal epigenetic barrier in reprogramming somatic cells toward pluripotency. Bioessays, 32, 385–387.

    CAS  PubMed  Google Scholar 

  67. Evans, M. J., Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.

    CAS  PubMed  Google Scholar 

  68. Cibelli, J. B., Campbell, K. H. S., Seidel, G. E., West, M. D., & Lanza, R. P. (2002). The health profile of cloned animals. Nature Biotechnology, 20, 13–14.

    CAS  PubMed  Google Scholar 

  69. Ying, Q. L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., et al. (2008). The ground state of embryonic stem cell self-renewal. Nature, 453, 519–523.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Prigione, A., Fauler, B., Lurz, R., Lehrach, H., & Adjaye, J. (2010). The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells, 28, 721–733.

    CAS  PubMed  Google Scholar 

  71. Armstrong, L., Tilgner, K., Saretzki, G., Atkinson, S. P., Stojkovic, M., et al. (2010). Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells, 28, 661–673.

    CAS  PubMed  Google Scholar 

  72. Birket, M. J., Orr, A. L., Gerencser, A. A., Madden, D. T., Vitelli, C., et al. (2011). A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. Journal of Cell Science, 124, 348–358.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tuppen, H. A., Hogan, V. E., He, L., Blakely, E. L., Worgan, L., et al. (2010). The p.M292T NDUFS2 mutation causes complex I-deficient Leigh syndrome in multiple families. Brain, 133, 2952–2963.

    PubMed  PubMed Central  Google Scholar 

  74. Munusamy, S., Saba, H., Mitchell, T., Megyesi, J. K., Brock, R. W., et al. (2009). Alteration of renal respiratory complex-III during experimental type-1 diabetes. BMC Endocrine Disorders, 9, 2.

    PubMed  PubMed Central  Google Scholar 

  75. Rossignol, R., Faustin, B., Rocher, C., Malgat, M., Mazat, J. P., et al. (2003). Mitochondrial threshold effects. Biochemical Journal, 370, 751–762.

    CAS  PubMed Central  Google Scholar 

  76. Jeppesen, T. D., Schwartz, M., Olsen, D. B., & Vissing, J. (2003). Oxidative capacity correlates with muscle mutation load in mitochondrial myopathy. Annals of Neurology, 54, 86–92.

    PubMed  Google Scholar 

  77. Trounce, I. (2000). Genetic control of oxidative phosphorylation and experimental models of defects. Human Reproduction, 15, 18–27.

    PubMed  Google Scholar 

  78. Saladi, S. V., & de la Sema, I. L. (2010). ATP dependent chromatin remodeling enzymes in embryonic stem cells. Stem Cell Reviews, 6, 62–73.

    CAS  PubMed Central  Google Scholar 

  79. Wallace, D. C., & Fan, W. (2010). Energetics, epigenetics, mitochondrial genetics. Mitochondrion, 10, 12–31.

    CAS  PubMed  Google Scholar 

  80. Dawid, I. B. (1974). 5-methylcytidylic acid: absence from mitochondrial DNA of frogs and HeLa cells. Science, 184, 80–81.

    CAS  PubMed  Google Scholar 

  81. Groot, G. S., & Kroon, A. M. (1979). Mitochondrial DNA from various organisms does not contain internally methylated cytosine in. Biochimica et Biophysica Acta, 564, 355–357.

    CAS  PubMed  Google Scholar 

  82. Shock, L. S., Thakkar, P. V., Peterson, E. J., Moran, R. G., & Taylor, S. M. (2011). DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 108, 3630–3635.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Oakes, C. C., La Salle, S., Smiraglia, D. J., Robaire, B., & Trasler, J. M. (2007). Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. Developmental Biology, 307, 368–379.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by funding from the British Heart Foundation (PG/04/117) and the Medical Research Council, UK (grant number: G0600273) and the Victorian Government’s Operational Inftrastructure Support Program. We are grateful to Dr Megan Munsie, Australian Stem Cell Centre, for the somatic cell nuclear transfer embryonic stem cell line (NT-ES); and Ms Jacqui Johnson, Centre for Reproduction and Development, Monash Institute of Medical Research for expertise in stem cell culture.

Disclosures

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin C. St. John.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM 1

(DOC 124 kb)

Figure S1

The effects of somatic cell reprogramming on ATP content and steady state levels of OXPHOS complexes in undifferentiated pluripotent cells. (A): ATP levels were analysed in MEF, ESC, iPS 2, SC-ES 1, and ES-ES pluripotent stem cells in normal ESC media or media supplemented with 1 μg/ul R6G for 72 hrs. The values are relative luminescent units (RLU) normalised to ESCs from three independent experiments. Bars represent means ± s.e.m; significant differences between cell types are indicated (* P < 0.05). (B) Treatment of pluripotent cells with R6G for 72 hrs to decrease mtDNA copy number. Graph shows mtDNA copy number as a percentage of untreated cells. (C) Steady state levels of CI-IV from undifferentiated ESCs, SC-ES, iPS, ES-ES, NT-ES and MEF cells were resolved by Blue-Native Polyacrylamide gel electrophoresis (BN-PAGE) and probed with antibodies against: NADH dehydrogenase 1 alpha subcomplex subunit 9 (CI); succinate dehydrogenase flavoprotein subunit (CII); cytochrome b-c1 complex subunit 1 (CIII2); cytochrome c oxidase subunit 1 (CIV). (JPEG 231 kb)

High resolution image (TIFF 1013 kb)

Figure S2

The effects of somatic cell reprogramming on the expression of mtDNA-specific replication factors in undifferentiated cells. Expression of PolgA, Twinkle (Peo1) mtSsbp1, PolgB and Tfam was analysed by quantitative real-time PCR in undifferentiated mouse iPS cells (lines 1–3), SC-ES cells (lines 1–4), ES-ES cells, the parental MEF cell line (QS/Rosa26) and the parental ESC D3s. All samples were normalised to β-actin. Bars represent means ± s.e.m; significant differences between cell types are indicated (* P < 0.05, ** P < 0.01, *** P < 0.001). (JPEG 309 kb)

High resolution image (TIFF 1361 kb)

Figure S3

Total ATP and steady state OXPHOS subunit levels in reprogrammed cells during in vitro differentiation. ATP levels were analysed in differentiating mouse ESC, iPS 2, SC-ES 1 and ES-ES cells on (A) Days 7 and (B) 14. The values are relative luminescent units (RLU) normalised to ESCs. Bars represent means ± s.e.m; significant differences between cell types are indicated (* P < 0.05; ** P < 0.01). (C) Total cell proteins were isolated and separated by BN-PAGE under non-denaturing conditions and probed with antibodies against: NADH dehydrogenase (ubiquitin) 1 alpha subcomplex subunit 9 (CI); succinate dehydrogenase flavoprotein subunit (CII); cytochrome b-c1 complex subunit 1 (CIII2); cytochrome c oxidase subunit 1 (CIV). (JPEG 259 kb)

High resolution image (TIFF 1051 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, R.D.W., Sumer, H., McKenzie, M. et al. The Effects of Nuclear Reprogramming on Mitochondrial DNA Replication. Stem Cell Rev and Rep 9, 1–15 (2013). https://doi.org/10.1007/s12015-011-9318-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9318-7

Keywords

Navigation