Skip to main content

Advertisement

Log in

Developmental Origins of the Adipocyte Lineage: New Insights from Genetics and Genomics Studies

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The current epidemic of obesity and overweight has caused a surge of interest in the study of adipose tissue formation. Much progress has been made in defining the transcriptional networks controlling the terminal differentiation of adipocyte progenitors into mature adipocytes. However, the early steps of adipocyte development and the embryonic origin of this lineage have been largely disregarded until recently. In mammals, two functionally different types of adipose tissues coexist, which are both involved in energy balance but assume opposite functions. White adipose tissue (WAT) stores energy, while brown adipose tissue (BAT) is specialized in energy expenditure. WAT and BAT can be found as several depots located in various sites of the body. Individual fat depots exhibit different timing of appearance during development, as well as distinct functional properties, suggesting possible differences in their developmental origin. This hypothesis has recently been revisited through large-scale genomics studies and in vivo lineage tracing approaches, which are reviewed in this report. These studies have provided novel fundamental insights into adipocyte biology, pointing out distinct developmental origins for WAT and BAT, as well as for individual WAT depots. They suggest that the adipose tissue is composed of distinct mini-organs, exhibiting developmental and functional differences, as well as variable contribution to obesity-related metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ailhaud, G., & Hauner, H. (2003). Handbook of obesity. New York: Marcel Dekker, Inc.

    Google Scholar 

  2. Prunet-Marcassus, B., Cousin, B., Caton, D., et al. (2006). From heterogeneity to plasticity in adipose tissues: site-specific differences. Experimental Cell Research, 312, 727–736.

    Article  PubMed  CAS  Google Scholar 

  3. Gesta, S., Tseng, Y. H., & Kahn, C. R. (2007). Developmental origin of fat: tracking obesity to its source. Cell, 131, 242–256.

    Article  PubMed  CAS  Google Scholar 

  4. Rosen, E. D., & MacDougald, O. A. (2006). Adipocyte differentiation from the inside out. Nature Reviews. Molecular Cell Biology, 7, 885–896.

    Article  PubMed  CAS  Google Scholar 

  5. Bjorntorp, P. (1990). “Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis, 10, 493–496.

    Article  PubMed  CAS  Google Scholar 

  6. Lafontan, M., & Berlan, M. (2003). Do regional differences in adipocyte biology provide new pathophysiological insights? Trends in Pharmacological Sciences, 24, 276–283.

    Article  PubMed  CAS  Google Scholar 

  7. Zeve, D., Tang, W., & Graff, J. (2009). Fighting fat with fat: the expanding field of adipose stem cells. Cell Stem Cell, 5, 472–481.

    Article  PubMed  CAS  Google Scholar 

  8. Nedergaard, J., Bengtsson, T., & Cannon, B. (2007). Unexpected evidence for active brown adipose tissue in adult humans. American Journal of Physiology. Endocrinology and Metabolism, 293, E444–452.

    Article  PubMed  CAS  Google Scholar 

  9. Virtanen, K. A., Lidell, M. E., Orava, J., et al. (2009). Functional brown adipose tissue in healthy adults. The New England Journal of Medicine, 360, 1518–1525.

    Article  PubMed  CAS  Google Scholar 

  10. Cypess, A. M., Lehman, S., Williams, G., et al. (2009). Identification and importance of brown adipose tissue in adult humans. The New England Journal of Medicine, 360, 1509–1517.

    Article  PubMed  CAS  Google Scholar 

  11. van Marken Lichtenbelt, W. D., Vanhommerig, J. W., Smulders, N. M., et al. (2009). Cold-activated brown adipose tissue in healthy men. The New England Journal of Medicine, 360, 1500–1508.

    Article  PubMed  Google Scholar 

  12. Enerback, S. (2010). Human brown adipose tissue. Cell Metabolism, 11, 248–252.

    Article  PubMed  Google Scholar 

  13. Nedergaard, J., & Cannon, B. (2010). The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metabolism, 11, 268–272.

    Article  PubMed  CAS  Google Scholar 

  14. Frontini, A., & Cinti, S. (2010). Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metabolism, 11, 253–256.

    Article  PubMed  CAS  Google Scholar 

  15. Poissonnet, C. M., LaVelle, M., & Burdi, A. R. (1988). Growth and development of adipose tissue. Jornal de Pediatria, 113, 1–9.

    CAS  Google Scholar 

  16. Hausman, G. J., & Richardson, L. R. (1982). Histochemical and ultrastructural analysis of developing adipocytes in the fetal pig. Acta Anatomica (Basel), 114, 228–247.

    Article  CAS  Google Scholar 

  17. Poissonnet, C. M., Burdi, A. R., & Bookstein, F. L. (1983). Growth and development of human adipose tissue during early gestation. Early Human Development, 8, 1–11.

    Article  PubMed  CAS  Google Scholar 

  18. Farmer, S. R. (2006). Transcriptional control of adipocyte formation. Cell Metabolism, 4, 263–273.

    Article  PubMed  CAS  Google Scholar 

  19. Le Douarin, N. M., & Kalcheim, C. (1999). The neural crest. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  20. Gesta, S., Bluher, M., Yamamoto, Y., et al. (2006). Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proceedings of the National Academy of Sciences of the United States of America, 103, 6676–6681.

    Article  PubMed  CAS  Google Scholar 

  21. Tchkonia, T., Lenburg, M., Thomou, T., et al. (2007). Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. American Journal of Physiology. Endocrinology and Metabolism, 292, E298–307.

    Article  PubMed  CAS  Google Scholar 

  22. Vohl, M. C., Sladek, R., Robitaille, J., et al. (2004). A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men. Obesity Research, 12, 1217–1222.

    Article  PubMed  CAS  Google Scholar 

  23. Cantile, M., Procino, A., D’Armiento, M., et al. (2003). HOX gene network is involved in the transcriptional regulation of in vivo human adipogenesis. Journal of Cellular Physiology, 194, 225–236.

    Article  PubMed  CAS  Google Scholar 

  24. Edens, N. K., Fried, S. K., Kral, J. G., et al. (1993). In vitro lipid synthesis in human adipose tissue from three abdominal sites. The American Journal of Physiology, 265, E374–379.

    PubMed  CAS  Google Scholar 

  25. Fried, S. K., Leibel, R. L., Edens, N. K., et al. (1993). Lipolysis in intraabdominal adipose tissues of obese women and men. Obesity Research, 1, 443–448.

    PubMed  CAS  Google Scholar 

  26. Tchkonia, T., Tchoukalova, Y. D., Giorgadze, N., et al. (2005). Abundance of two human preadipocyte subtypes with distinct capacities for replication, adipogenesis, and apoptosis varies among fat depots. American Journal of Physiology. Endocrinology and Metabolism, 288, E267–277.

    Article  PubMed  CAS  Google Scholar 

  27. Smith, A. G. (2001). Embryo-derived stem cells: of mice and men. Annual Review of Cell and Developmental Biology, 17, 435–462.

    Article  PubMed  CAS  Google Scholar 

  28. Keller, G. M. (1995). In vitro differentiation of embryonic stem cells. Current Opinion in Cell Biology, 7, 862–869.

    Article  PubMed  CAS  Google Scholar 

  29. Dani, C., Smith, A. G., Dessolin, S., et al. (1997). Differentiation of embryonic stem cells into adipocytes in vitro. Journal of Cell Science, 110(Pt 11), 1279–1285.

    PubMed  CAS  Google Scholar 

  30. Wdziekonski, B., Villageois, P., & Dani, C. (2003). Development of adipocytes from differentiated ES cells. Methods in Enzymology, 365, 268–277.

    Article  PubMed  CAS  Google Scholar 

  31. Wdziekonski, B., Villageois, P., & Dani, C. (2007). Differentiation of mouse embryonic stem cells and of human adult stem cells into adipocytes. Curr Protoc Cell Biol. Chapter 23:Unit 23 24.

  32. Billon, N., Monteiro, M. C., & Dani, C. (2008). Developmental origin of adipocytes: new insights into a pending question. Biology of the Cell, 100, 563–575.

    Article  PubMed  CAS  Google Scholar 

  33. Monteiro, M. C., Wdziekonski, B., Villageois, P., et al. (2009). Commitment of mouse embryonic stem cells to the adipocyte lineage requires retinoic acid receptor beta and active GSK3. Stem Cells and Development, 18, 457–463.

    Article  PubMed  CAS  Google Scholar 

  34. Billon, N., Kolde, R., Reimand, J., et al. (2010). Comprehensive transcriptome analysis of mouse embryonic stem cell adipogenesis unravels new processes of adipocyte development. Genome Biology, 11, R80.

    Article  PubMed  Google Scholar 

  35. Wright, J. T., & Hausman, G. J. (1990). Adipose tissue development in the fetal pig examined using monoclonal antibodies. Journal of Animal Science, 68, 1170–1175.

    PubMed  CAS  Google Scholar 

  36. Hausman, G. J., Wright, J. T., Jewell, D. E., et al. (1990). Fetal adipose tissue development. International Journal of Obesity, 14(Suppl 3), 177–185.

    PubMed  Google Scholar 

  37. Miranville, A., Heeschen, C., Sengenes, C., et al. (2004). Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation, 110, 349–355.

    Article  PubMed  CAS  Google Scholar 

  38. Planat-Benard, V., Silvestre, J. S., Cousin, B., et al. (2004). Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation, 109, 656–663.

    Article  PubMed  Google Scholar 

  39. Tang, W., Zeve, D., Suh, J. M., et al. (2008). White fat progenitor cells reside in the adipose vasculature. Science, 322, 583–586.

    Article  PubMed  CAS  Google Scholar 

  40. Vodyanik, M. A., Yu, J., Zhang, X., et al. (2010). A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell, 7, 718–729.

    Article  PubMed  CAS  Google Scholar 

  41. Le Douarin, N. M., Creuzet, S., Couly, G., et al. (2004). Neural crest cell plasticity and its limits. Development, 131, 4637–4650.

    Article  PubMed  Google Scholar 

  42. Kawaguchi, J., Mee, P. J., & Smith, A. G. (2005). Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. Bone, 36, 758–769.

    Article  PubMed  CAS  Google Scholar 

  43. Billon, N., Iannarelli, P., Monteiro, M. C., et al. (2007). The generation of adipocytes by the neural crest. Development, 134, 2283–2292.

    Article  PubMed  CAS  Google Scholar 

  44. Mikkelsen, T. S., Xu, Z., Zhang, X., et al. (2010). Comparative epigenomic analysis of murine and human adipogenesis. Cell, 143, 156–169.

    Article  PubMed  CAS  Google Scholar 

  45. Takashima, Y., Era, T., Nakao, K., et al. (2007). Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell, 129, 1377–1388.

    Article  PubMed  CAS  Google Scholar 

  46. Li, M., Pevny, L., Lovell-Badge, R., et al. (1998). Generation of purified neural precursors from embryonic stem cells by lineage selection. Current Biology, 8, 971–974.

    Article  PubMed  CAS  Google Scholar 

  47. Rodeheffer, M. S., Birsoy, K., & Friedman, J. M. (2008). Identification of white adipocyte progenitor cells in vivo. Cell, 135, 240–249.

    Article  PubMed  CAS  Google Scholar 

  48. Sengenes, C., Lolmede, K., Zakaroff-Girard, A., et al. (2005). Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. Journal of Cellular Physiology, 205, 114–122.

    Article  PubMed  CAS  Google Scholar 

  49. Loncar, D. (1992). Brown adipose tissue as a derivative of mesoderm grafted below the kidney capsule. A model for differentiation of isolated rat mesoderm. The International Journal of Developmental Biology, 36, 265–274.

    PubMed  CAS  Google Scholar 

  50. Atit, R., Sgaier, S. K., Mohamed, O. A., et al. (2006). Beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Developmental Biology, 296, 164–176.

    Article  PubMed  CAS  Google Scholar 

  51. Timmons, J. A., Wennmalm, K., Larsson, O., et al. (2007). Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proceedings of the National Academy of Sciences of the United States of America, 104, 4401–4406.

    Article  PubMed  CAS  Google Scholar 

  52. Seale, P., Bjork, B., Yang, W., et al. (2008). PRDM16 controls a brown fat/skeletal muscle switch. Nature, 454, 961–967.

    Article  PubMed  CAS  Google Scholar 

  53. Crisan, M., Casteilla, L., Lehr, L., et al. (2008). A reservoir of brown adipocyte progenitors in human skeletal muscle. Stem Cells, 26, 2425–2433.

    Article  PubMed  CAS  Google Scholar 

  54. Seale, P., Kajimura, S., Yang, W., et al. (2007). Transcriptional control of brown fat determination by PRDM16. Cell Metabolism, 6, 38–54.

    Article  PubMed  CAS  Google Scholar 

  55. Kajimura, S., Seale, P., Kubota, K., et al. (2009). Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature, 460, 1154–1158.

    Article  PubMed  CAS  Google Scholar 

  56. Kajimura, S., Seale, P., & Spiegelman, B. M. (2010). Transcriptional control of brown fat development. Cell Metabolism, 11, 257–262.

    Article  PubMed  CAS  Google Scholar 

  57. Cannon, B., & Nedergaard, J. (2008). Developmental biology: neither fat nor flesh. Nature, 454, 947–948.

    Article  PubMed  CAS  Google Scholar 

  58. Farmer, S. R. (2008). Brown fat and skeletal muscle: unlikely cousins? Cell, 134, 726–727.

    Article  PubMed  CAS  Google Scholar 

  59. Farmer, S. R. (2008). Molecular determinants of brown adipocyte formation and function. Genes & Development, 22, 1269–1275.

    Article  CAS  Google Scholar 

  60. Enerback, S. (2009). The origins of brown adipose tissue. The New England Journal of Medicine, 360, 2021–2023.

    Article  PubMed  Google Scholar 

  61. Bowers, R. R., & Lane, M. D. (2007). A role for bone morphogenetic protein-4 in adipocyte development. Cell Cycle, 6, 385–389.

    Article  PubMed  CAS  Google Scholar 

  62. Jin, W., Takagi, T., Kanesashi, S. N., et al. (2006). Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. Developmental Cell, 10, 461–471.

    Article  PubMed  CAS  Google Scholar 

  63. Huang, H., Song, T. J., Li, X., et al. (2009). BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proceedings of the National Academy of Sciences of the United States of America, 106, 12670–12675.

    Article  PubMed  CAS  Google Scholar 

  64. Tang, Q. Q., Otto, T. C., & Lane, M. D. (2004). Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proceedings of the National Academy of Sciences of the United States of America, 101, 9607–9611.

    Article  PubMed  CAS  Google Scholar 

  65. Tseng, Y. H., Kokkotou, E., Schulz, T. J., et al. (2008). New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature, 454, 1000–1004.

    Article  PubMed  CAS  Google Scholar 

  66. Casteilla, L., Nougues, J., Reyne, Y., et al. (1991). Differentiation of ovine brown adipocyte precursor cells in a chemically defined serum-free medium. Importance of glucocorticoids and age of animals. European Journal of Biochemistry, 198, 195–199.

    Article  PubMed  CAS  Google Scholar 

  67. Cousin, B., Cinti, S., Morroni, M., et al. (1992). Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. Journal of Cell Science, 103(Pt 4), 931–942.

    PubMed  CAS  Google Scholar 

  68. Xue, B., Coulter, A., Rim, J. S., et al. (2005). Transcriptional synergy and the regulation of Ucp1 during brown adipocyte induction in white fat depots. Molecular and Cellular Biology, 25, 8311–8322.

    Article  PubMed  CAS  Google Scholar 

  69. Skarulis, M. C., Celi, F. S., Mueller, E., et al. (2010). Thyroid hormone induced brown adipose tissue and amelioration of diabetes in a patient with extreme insulin resistance. The Journal of Clinical Endocrinology and Metabolism, 95, 256–262.

    Article  PubMed  CAS  Google Scholar 

  70. Lean, M. E., James, W. P., Jennings, G., et al. (1986). Brown adipose tissue in patients with phaeochromocytoma. International Journal of Obesity, 10, 219–227.

    PubMed  CAS  Google Scholar 

  71. Vegiopoulos, A., Muller-Decker, K., Strzoda, D., et al. (2010). Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science, 328, 1158–1161.

    Article  PubMed  CAS  Google Scholar 

  72. Petrovic, N., Walden, T. B., Shabalina, I. G., et al. (2010). Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. The Journal of Biological Chemistry, 285, 7153–7164.

    Article  PubMed  CAS  Google Scholar 

  73. Zingaretti, M. C., Crosta, F., Vitali, A., et al. (2009). The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. The FASEB Journal, 23, 3113–3120.

    Article  CAS  Google Scholar 

  74. Elabd, C., Chiellini, C., Carmona, M., et al. (2009). Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells, 27, 2753–2760.

    Article  PubMed  CAS  Google Scholar 

  75. Cinti, S. (2009). Reversible physiological transdifferentiation in the adipose organ. Proceedings of the Nutrition Society:1–10.

  76. Loncar, D. (1991). Convertible adipose tissue in mice. Cell and Tissue Research, 266, 149–161.

    Article  PubMed  CAS  Google Scholar 

  77. Moulin, K., Truel, N., Andre, M., et al. (2001). Emergence during development of the white-adipocyte cell phenotype is independent of the brown-adipocyte cell phenotype. The Biochemical Journal, 356, 659–664.

    Article  PubMed  CAS  Google Scholar 

  78. Seale, P., Conroe, H. M., Estall, J., et al. (2011). Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. Journal of Clinical Investigation, 121, 96–105.

    Article  PubMed  CAS  Google Scholar 

  79. Guerra, C., Koza, R. A., Yamashita, H., et al. (1998). Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. Journal of Clinical Investigation, 102, 412–420.

    Article  PubMed  CAS  Google Scholar 

  80. Ishibashi, J., & Seale, P. (2010). Medicine. Beige can be slimming. Science, 328, 1113–1114.

    Article  PubMed  CAS  Google Scholar 

  81. Sera, Y., LaRue, A. C., Moussa, O., et al. (2009). Hematopoietic stem cell origin of adipocytes. Experimental Hematology, 37, 1108–1120. 1120 e1101-1104.

    Article  PubMed  CAS  Google Scholar 

  82. Majka, S. M., Fox, K. E., Psilas, J. C., et al. (2010). De novo generation of white adipocytes from the myeloid lineage via mesenchymal intermediates is age, adipose depot, and gender specific. Proceedings of the National Academy of Sciences of the United States of America, 107, 14781–14786.

    Article  PubMed  CAS  Google Scholar 

  83. Xiong, C., Xie, C. Q., Zhang, L., et al. (2005). Derivation of adipocytes from human embryonic stem cells. Stem Cells and Development, 14, 671–675.

    Article  PubMed  CAS  Google Scholar 

  84. Taura, D., Noguchi, M., Sone, M., et al. (2009). Adipogenic differentiation of human induced pluripotent stem cells: comparison with that of human embryonic stem cells. FEBS Letters, 583, 1029–1033.

    Article  PubMed  CAS  Google Scholar 

  85. Lee, G., Kim, H., Elkabetz, Y., et al. (2007). Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nature Biotechnology.

  86. Wingender, E., Dietze, P., Karas, H., et al. (1996). TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Research, 24, 238–241.

    Article  PubMed  CAS  Google Scholar 

  87. Karolchik, D., Kuhn, R. M., Baertsch, R., et al. (2008). The UCSC Genome Browser Database: 2008 update. Nucleic Acids Research, 36, D773–779.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by CNRS and by funding under the Sixth Research Framework Programme of the European Union, Project FunGenES (LSHG-CT-2003–503494), the Egide Parrot PHC Programme N° 20679QJ, the European Union Marie Curie program and the Portuguese fundation for science and technology (SFRH/BD/44625/2008). We are very grateful to R.Kolde for help with TFBS enrichment meta-analysis.

Disclosure of potential conflicts of interest

The authors declare no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Dani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billon, N., Dani, C. Developmental Origins of the Adipocyte Lineage: New Insights from Genetics and Genomics Studies. Stem Cell Rev and Rep 8, 55–66 (2012). https://doi.org/10.1007/s12015-011-9242-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9242-x

Keywords

Navigation