Skip to main content

Advertisement

Log in

Human Wharton’s Jelly Stem Cells Have Unique Transcriptome Profiles Compared to Human Embryonic Stem Cells and Other Mesenchymal Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The human umbilical cord that originates from the embryo is an extra-embryonic membrane and the Wharton’s jelly within it is a rich source of stem cells (hWJSCs). It is not definitely known whether these cells behave as human embryonic stem cells (hESCs), human mesenchymal stem cells (hMSC) or both. They have the unique properties of high proliferation rates, wide multipotency, hypoimmunogenicity, do not induce teratomas and have anticancer properties. These advantages are important considerations for their use in cell based therapies and treatment of cancers. In a search for properties that confer these advantages we compared a detailed transcriptome profiling of hWJSCs using DNA microarrays with that of a panel of known hESCs, hMSCs and stromal cells. hWJSCs expressed low levels of the pluripotent embryonic stem cell markers including POUF1, NANOG, SOX2 and LIN28, thus explaining why they do not produce teratomas. Several cytokines were significantly upregulated in hWJSCs including IL12A which is associated with the induction of apoptosis, thus explaining their anticancer properties. When GO Biological Process analysis was compared between the various stem cell types, hWJSCs showed an increased expression of genes associated with the immune system, chemotaxis and cell death. The ability to modulate immune responses makes hWJSCs an important compatible stem cell source for transplantation therapy in allogeneic settings without immunorejection. The data in the present study which is the first detailed report on hWJSC transcriptomes provide a foundation for future functional studies where the exact mechanisms of these unique properties of hWJSCs can be confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bongso, A., Fong, C. Y., Ng, S. C., & Ratnam, S. (1994). Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod, 9, 2110–2117.

    CAS  PubMed  Google Scholar 

  2. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  3. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., & Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol, 18, 399–404.

    Article  CAS  PubMed  Google Scholar 

  4. Laflamme, M. A., Chen, K. Y., Naumova, A. V., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol, 25, 1015–1024.

    Article  CAS  PubMed  Google Scholar 

  5. Shim, J. H., Kim, S. E., Woo, D. H., et al. (2007). Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia, 50, 1228–1238.

    Article  CAS  PubMed  Google Scholar 

  6. Yang, D., Zhang, Z. J., Oldenburg, M., Ayala, M., & Zhang, S. C. (2008). Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells, 26, 55–63.

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  CAS  PubMed  Google Scholar 

  8. Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  9. French, A. J., Adams, C. A., Anderson, L. S., Kitchen, J. R., Hughes, M. R., & Wood, S. H. (2008). Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells, 26, 485–493.

    Article  CAS  PubMed  Google Scholar 

  10. Aleckovic, M., & Simon, C. (2008). Is teratoma formation in stem cell research a characterization tool or a window to developmental biology? Reprod Biomed Online, 17, 270–280.

    Article  PubMed  Google Scholar 

  11. Lensch, M. W., Schlaeger, T. M., Zon, L. I., et al. (2007). Teratoma formation assays with human embryonic stem cells: a rationale for one type of human-animal chimera. Cell Stem Cell, 1, 253–258.

    Article  CAS  PubMed  Google Scholar 

  12. Blum, B., & Benvenisty, N. (2008). The tumorigenecity of human embryonic stem cells. Advances in Cancer Res, 100, 133–158.

    Article  Google Scholar 

  13. Bongso, A., Fong, C. Y., & Gauthaman, K. (2008). Taking stem cells to the clinic: major challenges. J Cell Biochem, 105, 1352–1360.

    Article  CAS  PubMed  Google Scholar 

  14. Pappa, K. I., & Anagnou, N. P. (2009). Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med, 4, 423–433.

    Article  PubMed  Google Scholar 

  15. Jones, E., & McGonagle, D. (2008). Human bone marrow mesenchymal stem cells in vivo. Rheumatology, 47, 126–131.

    Article  CAS  PubMed  Google Scholar 

  16. Fong, C. Y., Richards, M., Manasi, N., Biswas, A., & Bongso, A. (2007). Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Reprod Biomed Online, 15, 708–718.

    Article  CAS  PubMed  Google Scholar 

  17. De Miguel, M. P., Montiel, F. A., Iglesias, P. L., Blazquez Martinez, A. B., & Nistal, M. (2009). Epiblast-derived stem cells in embryonic and adult tissues. Int J Dev Bio, 53, 1529–1540.

    Article  Google Scholar 

  18. Karahuseyinoglu, S., Cinar, O., Kilic, E., et al. (2007). Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells, 25, 319–331.

    Article  CAS  PubMed  Google Scholar 

  19. Chao, K. C., Chao, K. F., Fu, Y. S., & Liu, S. H. (2008). Islet-like clusters derived from mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One, 3, e1451.

    Article  PubMed  Google Scholar 

  20. Wang, L., Tran, I., Seshareddy, K., Weiss, M. L., & Detamore, M. S. (2009). A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Eng Part A, 15, 2259–2266.

    Article  CAS  PubMed  Google Scholar 

  21. Sarugaser, R., Lickorish, D., Baksh, D., et al. (2005). Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells, 23, 220–229.

    Article  PubMed  Google Scholar 

  22. Troyer, D. L., & Weiss, M. L. (2008). Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells, 26, 591–599.

    Article  PubMed  Google Scholar 

  23. Weiss, M. L., Medicetty, S., Bledsoe, A. R., et al. (2006). Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells, 24, 781–792.

    Article  CAS  PubMed  Google Scholar 

  24. Hou, T., Xu, J., Wu, X., et al. (2009). Umbilical cord Wharton’s Jelly: a new potential cell source of mesenchymal stromal cells for bone tissue engineering. Tissue Eng Part A, 15, 2325–2334.

    Article  CAS  PubMed  Google Scholar 

  25. Ganta, C., Chiyo, D., Ayuzawa, R., et al. (2009). Rat umbilical cord stem cells completely abolish rat mammary carcinomas with no evidence of metastasis or recurrence 100 days post-tumor cell inoculation. Cancer Res, 69, 1815–1820.

    Article  CAS  PubMed  Google Scholar 

  26. Ayuzawa, R., Doi, C., Rachakatla, R. S., et al. (2009). Naive human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Lett, 280, 31–37.

    Article  CAS  PubMed  Google Scholar 

  27. Fong CY, Subramanian A, Biswas A, et al. Derivation efficiency, cell proliferation, freeze-thaw survival, stem-cell properties and differentiation of human Wharton’s jelly stem cells. Reprod BioMed. 2010. Online doi:10.1016/j.rbmo.2010.04.010.

  28. Reich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P., & Mesirov, J. P. (2006). GenePattern 2.0. Nat Genet, 38, 500–501.

    Article  CAS  PubMed  Google Scholar 

  29. Gould, J., Getz, G., Monti, S., Reich, M., & Mesirov, J. P. (2006). Comparative gene marker selection suite. Bioinformatics, 22, 1924–1925.

    Article  CAS  PubMed  Google Scholar 

  30. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B (Methodological), 57, 289–300.

    Google Scholar 

  31. Corram, T. E., Settles, M. L., & Chen, X. (2009). Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array. BMC Genomics, 10, 253.

    Article  Google Scholar 

  32. Maisel, M., Herr, A., Milosevic, J., et al. (2007). Transcription profiling of adult and fetal human neuroprogenitors identifies divergent paths to maintain the neuroprogenitor cell state. Stem Cells, 25, 1231–1240.

    Article  CAS  PubMed  Google Scholar 

  33. Subramanian, A., Tamayo, P., Mootha, V. K., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 102, 15545–15550.

    Article  CAS  PubMed  Google Scholar 

  34. Cai, J., Chen, J., Liu, Y., et al. (2006). Assessing self-renewal and differentiation in human embryonic stem cell lines. Stem Cells, 24, 516–530.

    Article  CAS  PubMed  Google Scholar 

  35. Richards, M., Tan, S. P., Tan, J. H., Chan, W. K., & Bongso, A. (2002). The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells, 22, 51–64.

    Article  Google Scholar 

  36. Anzalone, R., Iacono, M. L., Corrao, S., et al. (2009). New emerging potentials for human Wharton’s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells Dev, 19, 423–438.

    Article  Google Scholar 

  37. La Rocca, G., Anzalone, R., Corrao, S., et al. (2009). Isolation and characterization of Oct-4+/HLA-G + mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem Cell Biol, 131, 267–282.

    Article  PubMed  Google Scholar 

  38. Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4, 44–57.

    Article  CAS  Google Scholar 

  39. The International Stem Cell Initiative. (2007). Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol, 25, 803–816.

    Article  Google Scholar 

  40. Nekanti, U., Rao, V. B., Bahirvani, A. G., Jan, M., Totey, S., & Ta, M. (2010). Long-term expansion and pluripotent marker array analysis of Wharton’s jelly-derived mesenchymal stem cells. Stem Cells Dev, 19, 117–30.

    Article  CAS  PubMed  Google Scholar 

  41. Alaminos, M., Pérez-Köhler, B., Garzón, I., et al. (2010). Transdifferentiation potentiality of human Wharton’s jelly stem cells towards vascular endothelial cells. J Cell Physiol, 223, 640–647.

    CAS  PubMed  Google Scholar 

  42. Kim, J. S., Romero, R., Tarca, A. L., et al. (2008). Gene expression profiling demonstrates a novel role for foetal fibrocytes and the umbilical vessels in human fetoplacental development. J Cell Mol Med, 12, 1317–1330.

    Article  CAS  PubMed  Google Scholar 

  43. Blum, B., Bar-Nur, O., Golan-Lev, T., & Benvenisty, N. (2009). The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells. Nat Biotechnol, 27, 281–287.

    Article  CAS  PubMed  Google Scholar 

  44. Muller, F., Laurent, L., Kostka, D., et al. (2008). Regulatory networks define phenotypic classes of human stem cell lines. Nature, 455, 401–405.

    Article  PubMed  Google Scholar 

  45. Chin, M. H., Mason, M. J., Xie, W., et al. (2009). Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell, 5, 111–123.

    Article  CAS  PubMed  Google Scholar 

  46. Carlin, R., Davis, D., Weiss, M., Schultz, B., & Troyer, D. (2006). Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol, 4, 8.

    Article  PubMed  Google Scholar 

  47. Jansen BJ, Gilissen C, Roelofs H, et al. Functional differences between mesenchymal stem cell population are reflected by their transcriptome. Stem Cell Dev (in press). 2010.

  48. Ben, I., Thomson, M. W., Carey, V. J., et al. (2008). An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet, 40, 499–507.

    Article  Google Scholar 

  49. Knoepfler, P. S. (2009). Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells, 27, 1050–1056.

    Article  CAS  PubMed  Google Scholar 

  50. Takeda, J., Seino, S., & Bell, G. I. (1992). Human Oct3 gene family: cDNA sequences, alternative splicing, gene organization, chromosomal location, and expression at low levels in adult tissues. Nucleic Acids Res, 20, 4613–4620.

    Article  CAS  PubMed  Google Scholar 

  51. Lee, J., Kim, H. K., Rho, J. Y., Han, Y. M., & Kim, J. (2006). The human OCT-4 isoforms differ in their ability to confer self-renewal. J Biol Chem, 281, 33554–33565.

    Article  CAS  PubMed  Google Scholar 

  52. Pain, D., Chirn, G. W., Strassel, C., & Kemp, D. M. (2005). Multiple retropseudogenes from pluripotent cell-specific gene expression indicates a potential signature for novel gene identification. J Biol Chem, 280, 6265–6268.

    Article  CAS  PubMed  Google Scholar 

  53. Liedtke, S., Stephan, M., & Kogler, G. (2008). Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cell research. Biol Chem, 389, 845–850.

    Article  CAS  PubMed  Google Scholar 

  54. Niwa, H., Miyazaki, J., & Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet, 24, 37237–6.

    Article  Google Scholar 

  55. Lengner, C. J., Camargo, F. D., Hochedlinger, K., et al. (2007). Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell, 1, 403–415.

    Article  CAS  PubMed  Google Scholar 

  56. Riekstina, U., Cakstina, I., Parfejevs, V., et al. (2009). Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev and Rep, 5, 378–386.

    Article  CAS  Google Scholar 

  57. Greco, S. J., Liu, K., & Rameshwar, P. (2007). Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells, 25, 3143–3154.

    Article  CAS  PubMed  Google Scholar 

  58. Liu, T., Wu, Y., Guo, X., Hui, J., Lee, E., & Lim, B. (2008). Effects of ectopic Nanog and Oct4 overexpression on mesenchymal stem cells. Stem Cell Dev, 18, 1013–1022.

    Article  Google Scholar 

  59. Guillot, P. V., Gotherstrom, C., Chan, J., Kurata, H., & Fisk, N. M. (2007). Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells, 25, 646–54.

    Article  CAS  PubMed  Google Scholar 

  60. Friedman, R., Betancur, M., Boissel, L., Tuncer, H., Cetrulo, C., & Klingemann, H. (2007). Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biol Blood Marrow Transplant, 13, 1477–1486.

    Article  PubMed  Google Scholar 

  61. Le Blanc, K. (2003). Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy, 5, 485–489.

    Article  PubMed  Google Scholar 

  62. Tse, W. T., Pendleton, J. D., Beyer, W. M., Egalka, M. C., & Guinan, E. C. (2003). Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation, 75, 389–397.

    Article  CAS  PubMed  Google Scholar 

  63. Horwitz, E. M., & Dominici, M. (2008). How do mesenchymal stromal cells exert their therapeutic benefit? Cytotherapy, 10, 771–774.

    Article  CAS  PubMed  Google Scholar 

  64. Weiss, M. L., Anderson, C., Medicetty, S., et al. (2008). Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells, 26, 2865–2874.

    Article  CAS  PubMed  Google Scholar 

  65. Yoo, K. H., Jang, I. K., Lee, M. W., et al. (2009). Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol, 259, 150–156.

    Article  CAS  PubMed  Google Scholar 

  66. Djouad, F., Charbonnier, L. M., Bouffi, C., et al. (2007). Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells, 25, 2025–2032.

    Article  CAS  PubMed  Google Scholar 

  67. Rabreau, M., Rouas-Freiss, N., Landi, M., Le Danff, C., & Carosella, E. D. (2000). HLA-G expression in trophoblast cells is independent of embryonic development. Hum Immunol, 61, 1108–1112.

    Article  CAS  PubMed  Google Scholar 

  68. Moffett, A., & Loke, Y. W. (2004). The immunological paradox of pregnancy: a reappraisal. Placenta, 25, 1–8.

    Article  CAS  PubMed  Google Scholar 

  69. Rouas-Freiss, N., Goncalves, R. M., Menier, C., Dausset, J., & Carosella, E. D. (1997). Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. Proc Natl Acad Sci U S A, 94, 11520–11525.

    Article  CAS  PubMed  Google Scholar 

  70. Le Bouteiller, P. (2000). HLA-G in the human placenta: expression and potential functions. Biochem Soc Trans, 28, 208–212.

    PubMed  Google Scholar 

  71. Clark, D. A., Yu, G., Levy, G. A., & Gorczynski, R. M. (2001). Procoagulants in fetus rejection: the role of the OX-2 (CD200) tolerance signal. Semin Immunol, 13, 255–263.

    Article  CAS  PubMed  Google Scholar 

  72. Clark, D. A., Keil, A., Chen, Z., Markert, U., Manuel, J., & Gorczynski, R. M. (2003). Placental trophoblast from successful human pregnancies expresses the tolerance signaling molecule, CD200 (OX-2). Am J Reprod Immunol, 50, 187–195.

    Article  PubMed  Google Scholar 

  73. Chamberlain, G., Fox, J., Ashton, B., & Middleton, J. (2007). Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 25, 2739–2749.

    Article  CAS  PubMed  Google Scholar 

  74. Gorczynski, R. M., Chen, Z., He, W., et al. (2009). Expression of a CD200 transgene is necessary for induction but not maintenance of tolerance to cardiac and skin allografts. J Immunol, 183, 1560–1568.

    Article  CAS  PubMed  Google Scholar 

  75. Fong, C. Y., Chak, L. L., Subramanian, A., et al. (2009). A three dimensional anchorage independent in vitro system for the prolonged growth of embryoid bodies to study cancer cell behaviour and anticancer agents. Stem Cell Rev Rep, 5, 410–419.

    Article  CAS  Google Scholar 

  76. Moser, B., Wolf, M., Walz, A., & Loetscher, P. (2004). Chemokines: multiple levels of leukocyte migration control. Trends Immunol, 25, 75–84.

    Article  CAS  PubMed  Google Scholar 

  77. Kobayashi, M., Fitz, L., Ryan, M., et al. (1989). Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med, 170, 827–845.

    Article  CAS  PubMed  Google Scholar 

  78. Wolf, S. F., Temple, P. A., Kobayashi, M., et al. (1991). Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J Immunol, 146, 3074–3081.

    CAS  PubMed  Google Scholar 

  79. Colombo, M. P., & Trinchieri, G. (2002). Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev, 13, 155–168.

    Article  CAS  PubMed  Google Scholar 

  80. Weiss, J. M., Subleski, J. J., Wigginton, J. M., & Wiltrout, R. H. (2007). Immunotherapy of cancer by IL-12-based cytokine combinations. Expert Opin Biol Ther, 7, 1705–1721.

    Article  CAS  PubMed  Google Scholar 

  81. Herman, J. G., & Meadows, G. G. (2007). Increased class 3 semaphorin expression modulates the invasive and adhesive properties of prostate cancer cells. Int J Oncol, 30, 1231–1238.

    CAS  PubMed  Google Scholar 

  82. Esselens, C., Malapeira, J., Colomé, N., et al. (2010). The cleavage of semaphorin 3C induced by ADAMTS1 promotes cell migration. J Biol Chem, 285, 2463–2473.

    Article  CAS  PubMed  Google Scholar 

  83. Capparuccia, L., & Tamagnone, L. (2009). Semaphorin signaling in cancer cells and in cells of the tumor microenvironment—two sides of a coin. J Cell Sci, 122, 1723–1736.

    Article  CAS  PubMed  Google Scholar 

  84. Tamm, I., Wang, Y., Sausville, E., et al. (1998). IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res, 58, 5315–5320.

    CAS  PubMed  Google Scholar 

  85. Baker, D. E., Harrison, N. J., Maltby, E., et al. (2007). Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol, 25, 207–215.

    Article  CAS  PubMed  Google Scholar 

  86. Angelucci, S., Marchisio, M., Di Giuseppe, F., et al. (2010). Proteome analysis of human Wharton’s jelly cells during in vitro expansion. Proteome Science, 8, 18–25.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support provided to Woon Khiong Chan by the Singapore Stem Cell Consortium (SSCC) and Singapore Ministry of Education Academic Research Fund (MOE-AcRF) and to Ariff Bongso by the Singapore National Medical Research Council (R-174-000-103-213). Chak LiLing was supported by a National University of Singapore postgraduate research scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariff Bongso.

Additional information

Chui-Yee Fong and Li-Ling Chak equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

NCBI GEO accession numbers of samples used in the DNA microarray analyses (PDF 55 kb)

Supplementary Table 2

Pearson’s correlation coefficient results for hESCs, hECCs, hWJSCs and hFCs. (PDF 199 kb)

Supplementary Table 3

Genes significantly upregulated in hWJSCs compared to the sample classes in the analyses performed in Fig. 1b. (PDF 778 kb)

Supplementary Table 4

Genes significantly upregulated and shared between hESCs and hECCs compared to hWJSCs in Fig. 1b. (PDF 186 kb)

Supplementary Table 5

Gene Ontology Biological Process analysis as performed with DAVID for Fig. 1d. (PDF 38 kb)

Supplementary Table 6

Gene Ontology Biological Process analysis as performed with DAVID for Fig. 2d. (PDF 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fong, CY., Chak, LL., Biswas, A. et al. Human Wharton’s Jelly Stem Cells Have Unique Transcriptome Profiles Compared to Human Embryonic Stem Cells and Other Mesenchymal Stem Cells. Stem Cell Rev and Rep 7, 1–16 (2011). https://doi.org/10.1007/s12015-010-9166-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9166-x

Keywords

Navigation