Skip to main content
Log in

Paving the Axonal Highway: From Stem Cells to Myelin Repair

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS), a demyelinating disorder of the central nervous system (CNS), remains among the most prominent and devastating diseases in contemporary neurology. Despite remarkable advances in anti-inflammatory therapies, the inefficiency or failure of myelin-forming oligodendrocytes to remyelinate axons and preserve axonal integrity remains a major impediment for the repair of MS lesions. To this end, the enhancement of remyelination through endogenous and exogenous repair mechanisms and the prevention of axonal degeneration are critical objectives for myelin repair therapies. Thus, recent advances in uncovering myelinating cell sources and the intrinsic and extrinsic factors that govern neural progenitor differentiation and myelination may pave a way to novel strategies for myelin regeneration. The scope of this review is to discuss the potential sources of stem/progenitor cells for CNS remyelination and the molecular mechanisms underlying oligodendrocyte myelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zalc, B. (2006). The acquisition of myelin: a success story. Novartis Foundation Symposium, 276, 15–21, discussion 21–15, 54–17, 275–281.

    PubMed  CAS  Google Scholar 

  2. Campagnoni, A. T. (2005). Molecular biology of myelination. In H. Kettenmann & B.R. Ransom (Eds.), Neuroglia (pp. 253–267). New York: Oxford University Press.

    Google Scholar 

  3. Franklin, R. J. (2002). Why does remyelination fail in multiple sclerosis? Nature Reviews Neuroscience, 3, 705–714.

    PubMed  CAS  Google Scholar 

  4. Franklin, R. J., & Kotter, M. R. (2008). The biology of CNS remyelination: the key to therapeutic advances. Journal of Neurology, 255(Suppl 1), 19–25.

    PubMed  CAS  Google Scholar 

  5. Chari, D. M., & Blakemore, W. F. (2002). Efficient recolonisation of progenitor-depleted areas of the CNS by adult oligodendrocyte progenitor cells. Glia, 37, 307–313.

    PubMed  Google Scholar 

  6. Levine, J. M., & Reynolds, R. (1999). Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Experimental Neurology, 160, 333–347.

    PubMed  CAS  Google Scholar 

  7. Chang, A., et al. (2000). NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. Journal of Neuroscience, 20, 6404–6412.

    PubMed  CAS  Google Scholar 

  8. Kuhlmann, T., et al. (2008). Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain, 131, 1749–1758.

    PubMed  CAS  Google Scholar 

  9. Mason, J. L., et al. (2004). Oligodendrocytes and progenitors become progressively depleted within chronically demyelinated lesions. American Journal of Pathology, 164, 1673–1682.

    PubMed  Google Scholar 

  10. Penderis, J., et al. (2003). Increasing local levels of neuregulin (glial growth factor-2) by direct infusion into areas of demyelination does not alter remyelination in the rat CNS. European Journal of Neuroscience, 18, 2253–2264.

    PubMed  Google Scholar 

  11. Sim, F. J., Zhao, C., Penderis, J., & Franklin, R. J. (2002). The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. Journal of Neuroscience, 22, 2451–2459.

    PubMed  CAS  Google Scholar 

  12. Kotter, M. R., Li, W. W., Zhao, C., & Franklin, R. J. (2006). Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. Journal of Neuroscience, 26, 328–332.

    PubMed  CAS  Google Scholar 

  13. Kotter, M. R., Zhao, C., van Rooijen, N., & Franklin, R. J. (2005). Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiology of Disease, 18, 166–175.

    PubMed  CAS  Google Scholar 

  14. Loughlin, A. J., et al. (1997). Myelination and remyelination of aggregate rat brain cell cultures enriched with macrophages. Journal of Neuroscience Research, 47, 384–392.

    PubMed  CAS  Google Scholar 

  15. Chari, D. M., Huang, W. L., & Blakemore, W. F. (2003). Dysfunctional oligodendrocyte progenitor cell (OPC) populations may inhibit repopulation of OPC depleted tissue. Journal of Neuroscience Research, 73, 787–793.

    PubMed  CAS  Google Scholar 

  16. Irvine, K. A., & Blakemore, W. F. (2007). A different regional response by mouse oligodendrocyte progenitor cells (OPCs) to high-dose X-irradiation has consequences for repopulating OPC-depleted normal tissue. European Journal of Neuroscience, 25, 417–424.

    PubMed  Google Scholar 

  17. Blakemore, W. F., & Irvine, K. A. (2008). Endogenous or exogenous oligodendrocytes for remyelination. Journal of the Neurological Sciences, 265, 43–46.

    PubMed  CAS  Google Scholar 

  18. Boheler, K. R., et al. (2002). Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circulation Research, 91, 189–201.

    PubMed  CAS  Google Scholar 

  19. Sartiani, L., et al. (2007). Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells, 25, 1136–1144.

    PubMed  CAS  Google Scholar 

  20. Kim, J. H., et al. (2002). Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature, 418, 50–56.

    PubMed  CAS  Google Scholar 

  21. Glaser, T., Schmandt, T., & Brustle, O. (2008). Generation and potential biomedical applications of embryonic stem cell-derived glial precursors. Journal of the Neurological Sciences, 265, 47–58.

    PubMed  CAS  Google Scholar 

  22. Ginis, I., et al. (2004). Differences between human and mouse embryonic stem cells. Developmental Biology, 269, 360–380.

    PubMed  CAS  Google Scholar 

  23. Keller, G. (2005). Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes & Development, 19, 1129–1155.

    CAS  Google Scholar 

  24. Chen, C. P., Kiel, M. E., Sadowski, D., & McKinnon, R. D. (2007). From stem cells to oligodendrocytes: prospects for brain therapy. Stem Cell Reviews, 3, 280–8.

    PubMed  Google Scholar 

  25. Brustle, O., et al. (1999). Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science, 285, 754–756.

    PubMed  CAS  Google Scholar 

  26. Liu, S., et al. (2000). Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proceedings of the National Academy of Sciences U S A, 97, 6126–6131.

    CAS  Google Scholar 

  27. Zhang, S. C., et al. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnology, 19, 1129–1133.

    PubMed  CAS  Google Scholar 

  28. McDonald, J. W., et al. (1999). Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nature Medicine, 5, 1410–1412.

    PubMed  CAS  Google Scholar 

  29. Keirstead, H. S., et al. (2005). Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. Journal of Neuroscience, 25, 4694–4705.

    PubMed  CAS  Google Scholar 

  30. Thomson, J. A., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    PubMed  CAS  Google Scholar 

  31. Reynolds, B. A., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255, 1707–1710.

    PubMed  CAS  Google Scholar 

  32. Baron-Van Evercooren, A., & Blakemore, W. F. (2004). Remyelination through engraftment. In R. A. Lazzarini (Ed.), Myelin biology and disorders (pp. 143–172). New York: Elsevier Academic.

    Google Scholar 

  33. Windrem, M. S., et al. (2008). Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell, 2, 553–565.

    PubMed  CAS  Google Scholar 

  34. Pluchino, S., et al. (2003). Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature, 422, 688–694.

    PubMed  CAS  Google Scholar 

  35. Pluchino, S., et al. (2005). Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature, 436, 266–271.

    PubMed  CAS  Google Scholar 

  36. Ben-Hur, T. (2008). Immunomodulation by neural stem cells. Journal of the Neurological Sciences, 265, 102–104.

    PubMed  CAS  Google Scholar 

  37. Pluchino, S., & Martino, G. (2008). The therapeutic plasticity of neural stem/precursor cells in multiple sclerosis. Journal of the Neurological Sciences, 265, 105–110.

    PubMed  CAS  Google Scholar 

  38. Ziv, Y., et al. (2006). Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proceedings of the National Academy of Sciences USA, 103, 13174–13179.

    CAS  Google Scholar 

  39. Polito, A., & Reynolds, R. (2005). NG2-expressing cells as oligodendrocyte progenitors in the normal and demyelinated adult central nervous system. Journal of Anatomy, 207, 707–716.

    PubMed  Google Scholar 

  40. Di Bello, I. C., Dawson, M. R., Levine, J. M., & Reynolds, R. (1999). Generation of oligodendroglial progenitors in acute inflammatory demyelinating lesions of the rat brain stem is associated with demyelination rather than inflammation. Journal of Neurocytology, 28, 365–381.

    PubMed  Google Scholar 

  41. Watanabe, M., Toyama, Y., & Nishiyama, A. (2002). Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. Journal of Neuroscience Research, 69, 826–836.

    PubMed  CAS  Google Scholar 

  42. Zhou, Q., Wang, S., & Anderson, D. J. (2000). Identification of a novel family of oligodendrocyte lineage-specific basic helix–loop–helix transcription factors. Neuron, 25, 331–343.

    PubMed  CAS  Google Scholar 

  43. Lu, Q. R., et al. (2000). Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron, 25, 317–329.

    PubMed  CAS  Google Scholar 

  44. Redwine, J. M., & Armstrong, R. C. (1998). In vivo proliferation of oligodendrocyte progenitors expressing PDGFalphaR during early remyelination. Journal of Neurobiology, 37, 413–428.

    PubMed  CAS  Google Scholar 

  45. Fancy, S. P., Zhao, C., & Franklin, R. J. (2004). Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Molecular and Cellular Neuroscience, 27, 247–254.

    PubMed  CAS  Google Scholar 

  46. Watanabe, M., Hadzic, T., & Nishiyama, A. (2004). Transient upregulation of Nkx2.2 expression in oligodendrocyte lineage cells during remyelination. Glia, 46, 311–322.

    PubMed  Google Scholar 

  47. Chandran, S., et al. (2008). Myelin repair: the role of stem and precursor cells in multiple sclerosis. Philosophical Transactions of the Royal Society London B Biological Sciences, 363, 171–183.

    CAS  Google Scholar 

  48. Nait-Oumesmar, B., et al. (1999). Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. European Journal of Neuroscience, 11, 4357–4366.

    PubMed  CAS  Google Scholar 

  49. Menn, B., et al. (2006). Origin of oligodendrocytes in the subventricular zone of the adult brain. Journal of Neuroscience, 26, 7907–7918.

    PubMed  CAS  Google Scholar 

  50. Richardson, W. D., et al. (2000). Oligodendrocyte lineage and the motor neuron connection. Glia, 29, 136–142.

    PubMed  CAS  Google Scholar 

  51. Pringle, N. P., & Richardson, W. D. (1993). A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development, 117, 525–533.

    PubMed  CAS  Google Scholar 

  52. Rogister, B., Ben-Hur, T., & Dubois-Dalcq, M. (1999). From neural stem cells to myelinating oligodendrocytes. Molecular and Cellular Neuroscience, 14, 287–300.

    PubMed  CAS  Google Scholar 

  53. Miller, R. H. (2002). Regulation of oligodendrocyte development in the vertebrate CNS. Progress in Neurobiology, 67, 451–467.

    PubMed  CAS  Google Scholar 

  54. Takebayashi, H., et al. (2000). Dynamic expression of basic helix–loop–helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mechanisms of Development, 99, 143–148.

    PubMed  CAS  Google Scholar 

  55. Richardson, W. D., Kessaris, N., & Pringle, N. (2006). Oligodendrocyte wars. Nature Reviews Neuroscience, 7, 11–18.

    PubMed  CAS  Google Scholar 

  56. Vallstedt, A., Klos, J. M., & Ericson, J. (2005). Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron, 45, 55–67.

    PubMed  CAS  Google Scholar 

  57. Cai, J., et al. (2005). Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of nkx6 regulation and shh signaling. Neuron, 45, 41–53.

    PubMed  CAS  Google Scholar 

  58. Kessaris, N., et al. (2006). Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nature Neuroscience, 9, 173–179.

    PubMed  CAS  Google Scholar 

  59. Fogarty, M., Richardson, W. D., & Kessaris, N. (2005). A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development, 132, 1951–1959.

    PubMed  CAS  Google Scholar 

  60. Woodruff, R. H., et al. (2001). Oligodendrocyte development in the spinal cord and telencephalon: common themes and new perspectives. International Journal of Developmental Neuroscience, 19, 379–385.

    PubMed  CAS  Google Scholar 

  61. He, W., et al. (2001). Multipotent stem cells from the mouse basal forebrain contribute GABAergic neurons and oligodendrocytes to the cerebral cortex during embryogenesis. Journal of Neuroscience, 21, 8854–8862.

    PubMed  CAS  Google Scholar 

  62. Yue, T., et al. (2006). A critical role for dorsal progenitors in cortical myelination. Journal of Neuroscience, 26, 1275–1280.

    PubMed  CAS  Google Scholar 

  63. Nait-Oumesmar, B., Picard-Riera, N., Kerninon, C., & Baron-Van Evercooren, A. (2008). The role of SVZ-derived neural precursors in demyelinating diseases: from animal models to multiple sclerosis. Journal of the Neurological Sciences, 265, 26–31.

    PubMed  CAS  Google Scholar 

  64. Doetsch, F. (2003). The glial identity of neural stem cells. Nature Neuroscience, 6, 1127–1134.

    PubMed  CAS  Google Scholar 

  65. Cayre, M., et al. (2006). Migrating and myelinating potential of subventricular zone neural progenitor cells in white matter tracts of the adult rodent brain. Molecular and Cellular Neuroscience, 31, 748–758.

    PubMed  CAS  Google Scholar 

  66. Blakemore, W. F., & Keirstead, H. S. (1999). The origin of remyelinating cells in the central nervous system. Journal of Neuroimmunology, 98, 69–76.

    PubMed  CAS  Google Scholar 

  67. Gensert, J. M., & Goldman, J. E. (1997). Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron, 19, 197–203.

    PubMed  CAS  Google Scholar 

  68. Aguirre, A. A., Chittajallu, R., Belachew, S., & Gallo, V. (2004). NG2-expressing cells in the subventricular zone are type C-like cells and contribute to interneuron generation in the postnatal hippocampus. Journal of Cell Biology, 165, 575–589.

    PubMed  CAS  Google Scholar 

  69. Aguirre, A., Dupree, J. L., Mangin, J. M., & Gallo, V. (2007). A functional role for EGFR signaling in myelination and remyelination. Nature Neuroscience, 10, 990–1002.

    PubMed  CAS  Google Scholar 

  70. Roy, N. S., Windrem, M. S., & Goldman, S. A. (2004). Progenitor cells of the adult human subcortical white matter. In R. A. Lazzarini (Ed.), Myelin biology and disorders (pp. 259–289). New York: Elsevier.

    Google Scholar 

  71. Kukekov, V. G., et al. (1999). Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Experimental Neurology, 156, 333–344.

    PubMed  CAS  Google Scholar 

  72. Curtis, M. A., et al. (2007). Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science, 315, 1243–1249.

    PubMed  CAS  Google Scholar 

  73. Nait-Oumesmar, B., et al. (2007). Activation of the subventricular zone in multiple sclerosis: evidence for early glial progenitors. Proceedings of the National Academy of Sciences USA, 104, 4694–4699.

    CAS  Google Scholar 

  74. Alberta, J. A., et al. (2001). Sonic hedgehog is required during an early phase of oligodendrocyte development in mammalian brain. Molecular and Cellular Neuroscience, 18, 434–441.

    PubMed  CAS  Google Scholar 

  75. Barres, B. A., Lazar, M. A., & Raff, M. C. (1994). A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development, 120, 1097–1108.

    PubMed  CAS  Google Scholar 

  76. Younes-Rapozo, V., et al. (2006). Thyroid hormone deficiency changes the distribution of oligodendrocyte/myelin markers during oligodendroglial differentiation in vitro. International Journal of Developmental Neuroscience, 24, 445–453.

    PubMed  CAS  Google Scholar 

  77. Lubetzki, C., et al. (1993). Even in culture, oligodendrocytes myelinate solely axons. Proceedings of the National Academy of Sciences USA, 90, 6820–6824.

    CAS  Google Scholar 

  78. Demerens, C., et al. (1996). Induction of myelination in the central nervous system by electrical activity. Proceedings of the National Academy of Sciences USA, 93, 9887–9892.

    CAS  Google Scholar 

  79. Macklin, W. B., Weill, C. L., & Deininger, P. L. (1986). Expression of myelin proteolipid and basic protein mRNAs in cultured cells. Journal of Neuroscience Research, 16, 203–217.

    PubMed  CAS  Google Scholar 

  80. Chan, J. R., et al. (2004). NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron, 43, 183–191.

    PubMed  CAS  Google Scholar 

  81. Gao, L., & Miller, R. H. (2006). Specification of optic nerve oligodendrocyte precursors by retinal ganglion cell axons. Journal of Neuroscience, 26, 7619–7628.

    PubMed  CAS  Google Scholar 

  82. Bozzali, M., & Wrabetz, L. (2004). Axonal signals and oligodendrocyte differentiation. Neurochemical Research, 29, 979–988.

    PubMed  CAS  Google Scholar 

  83. Cosgaya, J. M., Chan, J. R., & Shooter, E. M. (2002). The neurotrophin receptor p75NTR as a positive modulator of myelination. Science, 298, 1245–1248.

    PubMed  CAS  Google Scholar 

  84. Chan, J. R., Cosgaya, J. M., Wu, Y. J., & Shooter, E. M. (2001). Neurotrophins are key mediators of the myelination program in the peripheral nervous system. Proceedings of the National Academy of Sciences USA, 98, 14661–14668.

    CAS  Google Scholar 

  85. Barres, B. A., et al. (1994). A crucial role for neurotrophin-3 in oligodendrocyte development. Nature, 367, 371–375.

    PubMed  CAS  Google Scholar 

  86. Kumar, S., Kahn, M. A., Dinh, L., & de Vellis, J. (1998). NT-3-mediated TrkC receptor activation promotes proliferation and cell survival of rodent progenitor oligodendrocyte cells in vitro and in vivo. Journal of Neuroscience Research, 54, 754–765.

    PubMed  CAS  Google Scholar 

  87. McTigue, D. M., Horner, P. J., Stokes, B. T., & Gage, F. H. (1998). Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. Journal of Neuroscience, 18, 5354–5365.

    PubMed  CAS  Google Scholar 

  88. Vos, J. P., Gard, A. L., & Pfeiffer, S. E. (1996). Regulation of oligodendrocyte cell survival and differentiation by ciliary neurotrophic factor, leukemia inhibitory factor, oncostatin M, and interleukin-6. Perspectives on Developmental Neurobiology, 4, 39–52.

    PubMed  CAS  Google Scholar 

  89. Stankoff, B., et al. (2002). Ciliary neurotrophic factor (CNTF) enhances myelin formation: a novel role for CNTF and CNTF-related molecules. Journal of Neuroscience, 22, 9221–9227.

    PubMed  CAS  Google Scholar 

  90. Ito, Y., et al. (2006). Sox10 regulates ciliary neurotrophic factor gene expression in Schwann cells. Proceedings of the National Academy of Sciences USA, 103, 7871–7876.

    CAS  Google Scholar 

  91. Ishibashi, T., et al. (2006). Astrocytes promote myelination in response to electrical impulses. Neuron, 49, 823–832.

    PubMed  CAS  Google Scholar 

  92. Falls, D. L. (2003). Neuregulins: functions, forms, and signaling strategies. Experimental Cell Research, 284, 14–30.

    PubMed  CAS  Google Scholar 

  93. Adlkofer, K., & Lai, C. (2000). Role of neuregulins in glial cell development. Glia, 29, 104–111.

    PubMed  CAS  Google Scholar 

  94. Nave, K. A., & Salzer, J. L. (2006). Axonal regulation of myelination by neuregulin 1. Current Opinion in Neurobiology, 16, 492–500.

    PubMed  CAS  Google Scholar 

  95. Michailov, G. V., et al. (2004). Axonal neuregulin-1 regulates myelin sheath thickness. Science, 304, 700–703.

    PubMed  CAS  Google Scholar 

  96. Canoll, P. D., et al. (1996). GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron, 17, 229–243.

    PubMed  CAS  Google Scholar 

  97. Park, S. K., Miller, R., Krane, I., & Vartanian, T. (2001). The erbB2 gene is required for the development of terminally differentiated spinal cord oligodendrocytes. Journal of Cell Biology, 154, 1245–1258.

    PubMed  CAS  Google Scholar 

  98. Sauvageot, C. M., & Stiles, C. D. (2002). Molecular mechanisms controlling cortical gliogenesis. Current Opinion in Neurobiology, 12, 244–249.

    PubMed  CAS  Google Scholar 

  99. Lu, Q. R., Balasubramaniyan, V., & Peru, R. L. (2007). Oligodendrocyte myelination in the mammalian CNS. Functional Development and Embryology, 1, 118–129.

    Google Scholar 

  100. Nicolay, D. J., Doucette, J. R., & Nazarali, A. J. (2007). Transcriptional control of oligodendrogenesis. Glia, 55, 1287–1299.

    PubMed  Google Scholar 

  101. Wegner, M. (2008). A matter of identity: transcriptional control in oligodendrocytes. Journal of Molecular Neuroscience, 35, 3–12.

    PubMed  CAS  Google Scholar 

  102. Mizuguchi, R., et al. (2001). Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron, 31, 757–771.

    PubMed  CAS  Google Scholar 

  103. Novitch, B. G., Chen, A. I., & Jessell, T. M. (2001). Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron, 31, 773–789.

    PubMed  CAS  Google Scholar 

  104. Zhou, Q., Choi, G., & Anderson, D. J. (2001). The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron, 31, 791–807.

    PubMed  CAS  Google Scholar 

  105. Lu, Q. R., et al. (2002). Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell, 109, 75–86.

    PubMed  CAS  Google Scholar 

  106. Takebayashi, H., et al. (2002). The basic helix–loop–helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Current Biology, 12, 1157–1163.

    PubMed  CAS  Google Scholar 

  107. Zhou, Q., & Anderson, D. J. (2002). The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell, 109, 61–73.

    PubMed  CAS  Google Scholar 

  108. Parras, C. M., et al. (2004). Mash1 specifies neurons and oligodendrocytes in the postnatal brain. European Molecular Biology Organization Journal, 23, 4495–4505.

    CAS  Google Scholar 

  109. Parras, C. M., et al. (2007). The proneural gene Mash1 specifies an early population of telencephalic oligodendrocytes. Journal of Neuroscience, 27, 4233–4242.

    PubMed  CAS  Google Scholar 

  110. Casarosa, S., Fode, C., & Guillemot, F. (1999). Mash1 regulates neurogenesis in the ventral telencephalon. Development, 126, 525–534.

    PubMed  CAS  Google Scholar 

  111. Helms, A. W., et al. (2005). Sequential roles for Mash1 and Ngn2 in the generation of dorsal spinal cord interneurons. Development, 132, 2709–2719.

    PubMed  CAS  Google Scholar 

  112. Samanta, J., & Kessler, J. A. (2004). Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development, 131, 4131–4142.

    PubMed  CAS  Google Scholar 

  113. Kondo, T., & Raff, M. (2000). The Id4 HLH protein and the timing of oligodendrocyte differentiation. European Molecular Biology Organization Journal, 19, 1998–2007.

    CAS  Google Scholar 

  114. Gokhan, S., et al. (2005). Combinatorial profiles of oligodendrocyte-selective classes of transcriptional regulators differentially modulate myelin basic protein gene expression. Journal of Neuroscience, 25, 8311–8321.

    PubMed  CAS  Google Scholar 

  115. Wang, S., et al. (2001). A role for the helix–loop–helix protein Id2 in the control of oligodendrocyte development. Neuron, 29, 603–614.

    PubMed  CAS  Google Scholar 

  116. Wang, S., et al. (1998). Notch receptor activation inhibits oligodendrocyte differentiation. Neuron, 21, 63–75.

    PubMed  Google Scholar 

  117. Deneen, B., et al. (2006). The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron, 52, 953–968.

    PubMed  CAS  Google Scholar 

  118. Kondo, T., & Raff, M. (2000). Basic helix–loop–helix proteins and the timing of oligodendrocyte differentiation. Development, 127, 2989–2998.

    PubMed  CAS  Google Scholar 

  119. Liu, A., et al. (2006). A molecular insight of Hes5-dependent inhibition of myelin gene expression: old partners and new players. European Molecular Biology Organization Journal, 25, 4833–4842.

    CAS  Google Scholar 

  120. Petryniak, M. A., Potter, G. B., Rowitch, D. H., & Rubenstein, J. L. (2007). Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron, 55, 417–433.

    PubMed  CAS  Google Scholar 

  121. Wegner, M. (2001). Expression of transcription factors during oligodendroglial development. Microscopy Research and Technique, 52, 746–752.

    PubMed  CAS  Google Scholar 

  122. Bowles, J., Schepers, G., & Koopman, P. (2000). Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Developmental Biology, 227, 239–255.

    PubMed  CAS  Google Scholar 

  123. Stolt, C. C., et al. (2005). Impact of transcription factor Sox8 on oligodendrocyte specification in the mouse embryonic spinal cord. Developmental Biology, 281, 309–317.

    PubMed  CAS  Google Scholar 

  124. Stolt, C. C., et al. (2003). The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes & Development, 17, 1677–1689.

    CAS  Google Scholar 

  125. Kellerer, S., et al. (2006). Replacement of the Sox10 transcription factor by Sox8 reveals incomplete functional equivalence. Development, 133, 2875–2886.

    PubMed  CAS  Google Scholar 

  126. Stolt, C. C., et al. (2002). Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes & Development, 16, 165–170.

    CAS  Google Scholar 

  127. Liu, Z., et al. (2007). Induction of oligodendrocyte differentiation by Olig2 and Sox10: evidence for reciprocal interactions and dosage-dependent mechanisms. Developmental Biology, 302, 683–693.

    PubMed  CAS  Google Scholar 

  128. Finzsch, M., Stolt, C. C., Lommes, P., & Wegner, M. (2008). Sox9 and Sox10 influence survival and migration of oligodendrocyte precursors in the spinal cord by regulating PDGF receptor alpha expression. Development, 135, 637–646.

    PubMed  CAS  Google Scholar 

  129. Stolt, C. C., et al. (2006). SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. Developmental Cell, 11, 697–709.

    PubMed  CAS  Google Scholar 

  130. Sohn, J., et al. (2006). Identification of Sox17 as a transcription factor that regulates oligodendrocyte development. Journal of Neuroscience, 26, 9722–9735.

    PubMed  CAS  Google Scholar 

  131. Briscoe, J., Pierani, A., Jessell, T. M., & Ericson, J. (2000). A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell, 101, 435–445.

    PubMed  CAS  Google Scholar 

  132. Hochstim, C., et al. (2008). Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell, 133, 510–522.

    PubMed  CAS  Google Scholar 

  133. Kessaris, N., Pringle, N., & Richardson, W. D. (2001). Ventral neurogenesis and the neuron-glial switch. Neuron, 31, 677–680.

    PubMed  CAS  Google Scholar 

  134. Qi, Y., et al. (2001). Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development, 128, 2723–2733.

    PubMed  CAS  Google Scholar 

  135. Kim, J. G., & Hudson, L. D. (1992). Novel member of the zinc finger superfamily: A C2-HC finger that recognizes a glia-specific gene. Molecular and Cellular Biology, 12, 5632–5639.

    PubMed  CAS  Google Scholar 

  136. Nielsen, J. A., Berndt, J. A., Hudson, L. D., & Armstrong, R. C. (2004). Myelin transcription factor 1 (Myt1) modulates the proliferation and differentiation of oligodendrocyte lineage cells. Molecular and Cellular Neuroscience, 25, 111–123.

    PubMed  CAS  Google Scholar 

  137. Berndt, J. A., et al. (2001). The transcriptional regulator Yin Yang 1 activates the myelin PLP gene. Journal of Neurochemistry, 77, 935–942.

    PubMed  CAS  Google Scholar 

  138. He, Y., et al. (2007). The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuron, 55, 217–230.

    PubMed  CAS  Google Scholar 

  139. Shimizu, T., et al. (2005). Wnt signaling controls the timing of oligodendrocyte development in the spinal cord. Developmental Biology, 282, 397–410.

    PubMed  CAS  Google Scholar 

  140. Rowitch, D. H. (2004). Glial specification in the vertebrate neural tube. Nature Reviews Neuroscience, 5, 409–419.

    PubMed  CAS  Google Scholar 

  141. Cai, J., et al. (2007). A crucial role for Olig2 in white matter astrocyte development. Development, 134, 1887–1899.

    PubMed  CAS  Google Scholar 

  142. Sun, T., et al. (2003). Cross-repressive interaction of the Olig2 and Nkx2.2 transcription factors in developing neural tube associated with formation of a specific physical complex. Journal of Neuroscience, 23, 9547–9556.

    PubMed  CAS  Google Scholar 

  143. Wang, S. Z., et al. (2006). An oligodendrocyte-specific zinc-finger transcription regulator cooperates with Olig2 to promote oligodendrocyte differentiation. Development, 133, 3389–3398.

    PubMed  CAS  Google Scholar 

  144. Li, H., Lu, Y., Smith, H. K., & Richardson, W. D. (2007). Olig1 and Sox10 interact synergistically to drive myelin basic protein transcription in oligodendrocytes. Journal of Neuroscience, 27, 14375–14382.

    PubMed  CAS  Google Scholar 

  145. Setoguchi, T., & Kondo, T. (2004). Nuclear export of OLIG2 in neural stem cells is essential for ciliary neurotrophic factor-induced astrocyte differentiation. Journal of Cell Biology, 166, 963–968.

    PubMed  CAS  Google Scholar 

  146. Xin, M., et al. (2005). Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. Journal of Neuroscience, 25, 1354–1365.

    PubMed  CAS  Google Scholar 

  147. Arnett, H. A., et al. (2004). bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science, 306, 2111–2115.

    PubMed  CAS  Google Scholar 

  148. Balabanov, R., & Popko, B. (2005). Myelin repair: developmental myelination redux? Nature Neuroscience, 8, 262–264.

    PubMed  CAS  Google Scholar 

  149. Goris, A., et al. (2006). Novel Olig 1-coding variants and susceptibility to multiple sclerosis. Journal of Neurology, Neurosurgery & Psychiatry, 77, 1296–1297.

    CAS  Google Scholar 

  150. Topilko, P., et al. (1994). Krox-20 controls myelination in the peripheral nervous system. Nature, 371, 796–799.

    PubMed  CAS  Google Scholar 

  151. Topilko, P., et al. (1997). Differential regulation of the zinc finger genes Krox-20 and Krox-24 (Egr-1) suggests antagonistic roles in Schwann cells. Journal of Neuroscience Research, 50, 702–712.

    PubMed  CAS  Google Scholar 

  152. Acar, M., et al. (2006). Senseless physically interacts with proneural proteins and functions as a transcriptional co-activator. Development, 133, 1979–1989.

    PubMed  CAS  Google Scholar 

  153. Bellefroid, E. J., et al. (1996). X-MyT1, a Xenopus C2HC-type zinc finger protein with a regulatory function in neuronal differentiation. Cell, 87, 1191–1202.

    PubMed  CAS  Google Scholar 

  154. Nakakura, E. K., et al. (2001). Mammalian Scratch: a neural-specific Snail family transcriptional repressor. Proceedings of the National Academy of Sciences USA, 98, 4010–4015.

    CAS  Google Scholar 

  155. Southwood, C., et al. (2004). CNS myelin paranodes require Nkx6–2 homeoprotein transcriptional activity for normal structure. Journal of Neuroscience, 24, 11215–11225.

    PubMed  CAS  Google Scholar 

  156. Hsieh, J., & Gage, F. H. (2004). Epigenetic control of neural stem cell fate. Current Opinion in Genetics & Development, 14, 461–469.

    CAS  Google Scholar 

  157. Hsieh, J., & Gage, F. H. (2005). Chromatin remodeling in neural development and plasticity. Current Opinion in Cell Biology, 17, 664–671.

    PubMed  CAS  Google Scholar 

  158. Shen, S., Li, J., & Casaccia-Bonnefil, P. (2005). Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. Journal of Cell Biology, 169, 577–589.

    PubMed  CAS  Google Scholar 

  159. Marin-Husstege, M., Muggironi, M., Liu, A., & Casaccia-Bonnefil, P. (2002). Histone deacetylase activity is necessary for oligodendrocyte lineage progression. Journal of Neuroscience, 22, 10333–10345.

    PubMed  CAS  Google Scholar 

  160. Liu, A., et al. (2007). The glial or neuronal fate choice of oligodendrocyte progenitors is modulated by their ability to acquire an epigenetic memory. Journal of Neuroscience, 27, 7339–7343.

    PubMed  CAS  Google Scholar 

  161. Iwamoto, K., et al. (2005). DNA methylation status of SOX10 correlates with its downregulation and oligodendrocyte dysfunction in schizophrenia. Journal of Neuroscience, 25, 5376–5381.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ed Hurlock for discussions and Kelly Zhang for illustration. This study was funded by grants from the National Multiple Sclerosis Society, and the National Institutes of Health (QRL) as well as the French MS Society, the European Leukodystrophy Associations, and INSERM (BNO). QRL is a Harry Weaver Neuroscience Scholar and a Basil O’Connor Scholar.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brahim Nait-Oumesmar or Q. Richard Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peru, R.L., Mandrycky, N., Nait-Oumesmar, B. et al. Paving the Axonal Highway: From Stem Cells to Myelin Repair. Stem Cell Rev 4, 304–318 (2008). https://doi.org/10.1007/s12015-008-9043-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-008-9043-z

Keywords

Navigation