Skip to main content
Log in

Cholesterol Hydroperoxide Generation, Translocation, and Reductive Turnover in Biological Systems

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Cholesterol is like other unsaturated lipids in being susceptible to peroxidative degradation upon exposure to strong oxidants like hydroxyl radical or peroxynitrite generated under conditions of oxidative stress. In the eukaryotic cell plasma membrane, where most of the cellular cholesterol resides, peroxidation leads to membrane structural and functional damage from which pathological states may arise. In low density lipoprotein, cholesterol and phospholipid peroxidation have long been associated with atherogenesis. Among the many intermediates/products of cholesterol oxidation, hydroperoxide species (ChOOHs) have a number of different fates and deserve special attention. These fates include (a) damage-enhancement via iron-catalyzed one-electron reduction, (b) damage containment via two-electron reduction, and (c) inter-membrane, inter-lipoprotein, and membrane-lipoprotein translocation, which allows dissemination of one-electron damage or off-site suppression thereof depending on antioxidant location and capacity. In addition, ChOOHs can serve as reliable and conveniently detected mechanistic reporters of free radical-mediated reactions vs. non-radical (e.g., singlet oxygen)-mediated reactions. Iron-stimulated peroxidation of cholesterol and other lipids underlies a newly discovered form of regulated cell death called ferroptosis. These and other deleterious consequences of radical-mediated lipid peroxidation will be discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Ch:

cholesterol

ChOOH:

cholesterol hydroperoxide

ChOH:

cholesterol hydroxide

ChOX:

oxidized cholesterol species

cAMP:

cyclic-AMP

LOOH:

lipid hydroperoxide

PLOOH:

phospholipid hydroperoxide

GPx4:

glutathione peroxidase type-4

GSH:

reduced glutathione

LDL:

low density lipoprotein

oxLDL:

oxidatively modified LDL

RBC:

red blood cell

SePx:

selenoperoxidase

References

  1. Halliwell, B., & Gutteridge, J. M. C. (1999). Free radicals in biology and medicine. Oxford: Clarendon.

    Google Scholar 

  2. Porter, N. A., Caldwell, S. E., & Mills, K. A. (1995). Mechanisms of free radical oxidation of unsaturated lipids. Lipids, 30, 277–290.

    Article  CAS  PubMed  Google Scholar 

  3. Girotti, A. W. (1998). Lipid hydroperoxide generation, turnover, and effector action in biological systems. Journal of Lipid Research, 39, 1529–1542.

    CAS  PubMed  Google Scholar 

  4. Girotti, A. W. (2001). Photosensitized oxidation of membrane lipids: Reaction pathways, cytotoxic effects, and cytoprotective mechanisms. Journal of Photochemistry and Photobiology B: Biology, 63, 103–113.

    Article  CAS  Google Scholar 

  5. Smith, L. L. (1981). Cholesterol autoxidation. New York, NY: Plenum.

    Book  Google Scholar 

  6. Doleiden, F. H., Farenholtz, S. R., Lamola, A. A., & Trozzolo, A. M. (1974). Reactivity of cholesterol and some fatty acids toward singlet oxygen. Photochemistry and Photobiology, 20, 519–521.

    Article  CAS  PubMed  Google Scholar 

  7. Iuliano, L. (2011). Pathways of cholesterol oxidation via non-enzymatic mechanisms. Chemistry and Physics of Lipids, 164, 457–468.

  8. Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C., & Witztum, J. L. (1989). Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. New England Journal of Medicine, 320, 915–924.

    Article  CAS  PubMed  Google Scholar 

  9. Stocker, R., & Keaney, Jr., J. F. (2004). Role of oxidative modifications in atherosclerosis. Physiological Reviews, 84, 1381–1478.

    Article  CAS  PubMed  Google Scholar 

  10. Teng, J. I., Kulig, M. J., Smith, L. L., Kan, G., & Van Lier, J. E. (1973). Sterol metabolism. XX. Cholesterol 7-hydroperoxide. Journal of Organic Chemistry, 38, 119–123.

    Article  CAS  PubMed  Google Scholar 

  11. Smith, L. L., Teng, J. L., Julig, M. J., & Hill, F. L. (1973). Sterol metabolism. 23. Cholesterol oxidation by radiation-induced processes. Journal of Organic Chemistry, 38, 1763–1765.

    Article  CAS  PubMed  Google Scholar 

  12. Kulig, M. J., & Smith, L. L. (1973). Sterol metabolism. XXV. Cholesterol oxidation by singlet molecular oxygen. Journal of Organic Chemistry, 38, 3639–3642.

    Article  CAS  PubMed  Google Scholar 

  13. Wilcox, A. L., & Marnett, L. J. (1993). Polyunsaturated fatty acid alkoxyl radicals exist as carbon-centered epoxyallylic radicals: A key step in hydroperoxide-amplified lipid peroxidation. Chemical Research in Toxicology, 6, 413–416.

    Article  CAS  PubMed  Google Scholar 

  14. Korytowski, W., Bachowski, G. J., & Girotti, A. W. (1993). Analysis of cholesterol and phospholipid hydroperoxides by high-performance liquid chromatography with mercury drop electrochemical detection. Analytical Biochemistry, 213, 111–119.

    Article  CAS  PubMed  Google Scholar 

  15. Korytowski, W., Geiger, P. G., & Girotti, A. W. (1995). High-performance liquid chromatography with mercury cathode electrochemical detection: Application to lipid hydroperoxide analysis. Journal of Chromatography B: Biomedical Applications, 670, 189–197.

    Article  CAS  PubMed  Google Scholar 

  16. Korytowski, W., Geiger, P. G., & Girotti, A. W. (1999). Lipid hydroperoxide analysis by high-performance liquid chromatography with mercury cathode electrochemical detection. Methods in Enzymology, 300, 23–33.

    Article  CAS  PubMed  Google Scholar 

  17. Korytowski, W., Wrona, M., & Girotti, A. W. (1999). Radiolabeled cholesterol as a reporter for assessing one-electron turnover of lipid hydroperoxides. Analytical Biochemistry, 270, 123–132.

    Article  CAS  PubMed  Google Scholar 

  18. Girotti, A. W., & Korytowski, W. (2016). Cholesterol as a natural probe for free radical-mediated lipid peroxidation in biological membranes and lipoproteins. Journal of Chromatography B: Analytical Technology and Biomedical Life Sciences, 1019, 202–209.

    Article  CAS  Google Scholar 

  19. Korytowski, W., Zareba, M., & Girotti, A. W. (2000). Inhibition of free radical-mediated cholesterol peroxidation by diazeniumdiolate-derived nitric oxide: Effect of release rate on mechanism of action in a membrane system. Chemical Research in Toxicology, 13, 1265–1274.

    Article  CAS  PubMed  Google Scholar 

  20. Hurst, R., Korytowski, W., Kriska, T., Esworthy, R. S., Chu, F. F., & Girotti, A. W. (2001). Hyperresistance to cholesterol hydroperoxide-induced peroxidative injury and apoptotic death in a tumor cell line that overexpresses glutathione peroxidase isotype-4. Free Radical Biology and Medicine, 31, 1051–1065.

    Article  CAS  PubMed  Google Scholar 

  21. Ursini, F., Maiorino, M., Brigelius-Flohé, R., Aumann, K. D., Roveri, A., Schomburg, D., & Flohé, L. (1995). Diversity of glutathione peroxidases. Methods in Enzymology, 252, 38–53.

    Article  CAS  PubMed  Google Scholar 

  22. Thomas, J. P., Maiorino, M., Ursini, F., & Girotti, A. W. (1990). Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation: In situ reduction of phospholipid and cholesterol hydroperoxides. Journal of Biological Chemistry, 265, 454–461.

    CAS  PubMed  Google Scholar 

  23. Korytowski, W., Geiger, P. G., & Girotti, A. W. (1996). Enzymatic reducibility in relation to cytotoxicity for various cholesterol hydroperoxides. Biochemistry, 35, 8670–8679.

    Article  CAS  PubMed  Google Scholar 

  24. Korytowski, W., Schmitt, J. C., & Girotti, A. W. (2010). Surprising inability of singlet oxygen-generated 6-hydroperoxycholesterol to induce damaging free radical lipid peroxidation in cell membranes. Photochemistry and Photobiology, 86, 747–751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kriska, T., Korytowski, W., & Girotti, A. W. (2002). Hyperresistance to photosensitized lipid peroxidation and apoptotic killing in 5-aminolevulinate-treated tumor cells overexpressing mitochondrial GPx4. Free Radical Biology and Medicine, 33, 1389–1402.

    Article  CAS  PubMed  Google Scholar 

  26. Yant, L. J., Ran, Q., Rao, L., Van Remmen, H., Shibatani, T., Belter, J. G., et al. (2003). The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radical Biology and Medicine, 34, 496–502.

    Article  CAS  PubMed  Google Scholar 

  27. Ran, Q., Van Remmen, H., Gu, M., Qi, W., Roberts, L. J., Prolla, T., et al. (2003). Embryonic fibroblasts from Gpx4+/- mice: A novel model for studying the role of membrane peroxidation in biological processes. Free Radical Biology and Medicine, 35, 1101–1109.

    Article  CAS  PubMed  Google Scholar 

  28. Ran, Q., Liang, H., Gu, M., Qi, W., Walter, C. A., Roberts, L. J., et al. (2004). Transgenic mice overexpressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosis. Journal of Biological Chemistry, 279, 55137–55146.

    Article  CAS  PubMed  Google Scholar 

  29. Yang, W. S., SriRamaratnam, R., Welsch, M. E., Shimada, K., Skouta, R., Viswanathan, V. S., et al. (2014). Regulation of ferroptotic cancer cell death by GPX4. Cell, 156, 317–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang, W. S., & Stockwell, B. R. (2016). Ferroptosis: Death by lipid peroxidation. Trends in Cell Biology, 26, 165–176.

    Article  CAS  PubMed  Google Scholar 

  31. Weitzel, F., & Wendel, A. (1993). Selenoenzymes regulate the activity of leukocyte 5-lipoxygenase via the peroxide tone. Journal of Biological Chemistry, 268, 6288–6292.

    CAS  PubMed  Google Scholar 

  32. Schnurr, K., Belkner, J., Ursini, F., Schewe, T., & Kühn, H. J. (1996). The selenoenzyme phospholipid hydroperoxide glutathione peroxidase controls the activity of the 15-lipoxygenase with complex substrates and preserves the specificity of the oxygenation products. Journal of Biological Chemistry, 271, 4653–4658.

    Article  CAS  PubMed  Google Scholar 

  33. Vila, A., Korytowski, W., & Girotti, A. W. (2000). Dissemination of peroxidative stress via intermembrane transfer of lipid hydroperoxides: Model studies with cholesterol hydroperoxides. Archives of Biochemistry and Biophysics, 380, 208–218.

    Article  CAS  PubMed  Google Scholar 

  34. Vila, A., Korytowski, W., & Girotti, A. W. (2001). Spontaneous intermembrane transfer of various cholesterol-derived hydroperoxide species: Kinetic studies with model membranes and cells. Biochemistry, 40, 14715–14726.

    Article  CAS  PubMed  Google Scholar 

  35. Vila, A., Korytowski, W., & Girotti, A. W. (2002). Spontaneous transfer of phospholipid and cholesterol hydroperoxides between cell membranes and low-density lipoprotein: Assessment of reaction kinetics and prooxidant effects. Biochemistry, 41, 13705–13716.

    Article  CAS  PubMed  Google Scholar 

  36. Girotti, A. W. (2008). Translocation as a means of disseminating lipid hydroperoxide-induced oxidative damage and effector action. Free Radical Biology and Medicine, 44, 956–968.

    Article  CAS  PubMed  Google Scholar 

  37. Scallen, T. J., Pastuszyn, A., Noland, B. J., Chanderbhan, R., Kharroubi, A., & Vahouny, G. V. (1985). Sterol carrier and lipid transfer proteins. Chemistry and Physics of Lipids, 38, 239–261.

    Article  CAS  PubMed  Google Scholar 

  38. Vila, A., Levchenko, V. V., Korytowski, W., & Girotti, A. W. (2004). Sterol carrier protein-2-facilitated intermembrane transfer of cholesterol- and phospholipid-derived hydroperoxides. Biochemistry, 43, 12592–12605.

    Article  CAS  PubMed  Google Scholar 

  39. Kriska, T., Levchenko, V. V., Korytowski, W., Atshaves, B. P., Schroeder, F., & Girotti, A. W. (2006). Intracellular dissemination of peroxidative stress. Internalization, transport, and lethal targeting of a cholesterol hydroperoxide species by sterol carrier protein-2-overexpressing hepatoma cells. Journal of Biological Chemistry, 281, 23643–23651.

    Article  CAS  PubMed  Google Scholar 

  40. Kriska, T., Pilat, A., Schmitt, J. C., & Girotti, A. W. (2010). Sterol carrier protein-2 (SCP-2) involvement in cholesterol hydroperoxide cytotoxicity as revealed by SCP-2 inhibitor effects. Journal of Lipid Research, 51, 3174–3184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Soccio, R. E., & Breslow, J. L. (2003). StAR-related lipid transfer (START) proteins: Mediators of intracellular lipid metabolism. Journal of Biological Chemistry, 278, 22183–22186.

    Article  CAS  PubMed  Google Scholar 

  42. Korytowski, W., Rodriguez-Agudo, D., Pilat, A., & Girotti, A. W. (2010). StarD4-mediated translocation of 7-hydroperoxycholesterol to isolated mitochondria: Deleterious effects and implications for steroidogenesis under oxidative stress conditions. Biochemical and Biophysical Research Communications, 392, 58–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Payne, A. H., & Hales, D. B. (2004). Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocrinology Reviews, 25, 947–970.

    Article  CAS  Google Scholar 

  44. Korytowski, W., Pilat, A., Schmitt, J. C., & Girotti, A. W. (2013). Deleterious cholesterol hydroperoxide trafficking in steroidogenic acute regulatory (StAR) protein-expressing MA-10 Leydig cells: Implications for oxidative stress-impaired steroidogenesis. Journal of Biological Chemistry, 288, 11509–11519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cuchel, M., & Rader, D. J. (2006). Macrophage reverse cholesterol transport: Key to the regression of atherosclerosis? Circulation, 113, 2548–2555.

    Article  PubMed  Google Scholar 

  46. Borthwick, F., Taylor, J. M., Bartholomew, C., & Graham, A. (2009). Differential regulation of the STARD1 subfamily of START lipid trafficking proteins in human macrophages. FEBS Letters, 583, 1147–1153.

    Article  CAS  PubMed  Google Scholar 

  47. Korytowski, W., Wawak, K., Pabisz, P., Schmitt, J. C., & Girotti, A. W. (2014). Macrophage mitochondrial damage from StAR transport of 7-hydroperoxycholesterol: Implications for oxidative stress-impaired reverse cholesterol transport. FEBS Letters, 588, 65–70.

    Article  CAS  PubMed  Google Scholar 

  48. Korytowski, W., Wawak, K., Pabisz, P., Schmitt, J. C., Chadwick, A. C., Sahoo, D., & Girotti, A. W. (2015). Impairment of macrophage cholesterol efflux by cholesterol hydroperoxide trafficking: Implications for atherogenesis under oxidative stress. Arteriosclerosis Thrombosis and Vascular Biology, 35, 2104–2113.

    Article  CAS  Google Scholar 

  49. Girotti, A. W., & Korytowski, W. (2014). Generation and reactivity of lipid hydroperoxides in biological systems. In J. T. Liebman, A. Greer (Eds.), The chemistry and physics of peroxides. West Sussex: Wiley. part 2, Ch. 18.

    Google Scholar 

  50. Tyurina, Y. Y., Tyurin, V. A., Zhao, Q., Djukic, M., Quinn, P. J., Pitt, B. R., et al. (2004). Oxidation of phosphatidylserine: A mechanism for plasma membrane phospholipid scrambling during apoptosis? Biochemical and Biophysical Research Communications, 324, 1059–1064.

    Article  CAS  PubMed  Google Scholar 

  51. Korytowski, W., Basova, L. V., Pilat, A., Kernstock, R. M., & Girotti, A. W. (2011). Permeabilization of the mitochondrial outer membrane by Bax/truncated Bid (tBid) proteins as sensitized by cardiolipin hydroperoxide translocation: Mechanistic implications for the intrinsic pathway of oxidative apoptosis. Journal of Biological Chemistry, 286, 26334–26343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Studies in the authors’ laboratories were supported by USPHS Grants CA72630, TW001386, and CA70823 (to A.W.G.) and Polish National Center for Science Grant NCN-2014/13/B/NZ3/00833 (to W.K.). We thank Peter Geiger, Andrew Vila, Tamas Kriska, Vlad Levchenko, Jared Schmitt, Magda Niziolek, Kasia Wawak, and Anna Pilat for their many valuable contributions to the research supported by these grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert W. Girotti.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girotti, A.W., Korytowski, W. Cholesterol Hydroperoxide Generation, Translocation, and Reductive Turnover in Biological Systems. Cell Biochem Biophys 75, 413–419 (2017). https://doi.org/10.1007/s12013-017-0799-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-017-0799-0

Keywords

Navigation