Skip to main content

Advertisement

Log in

ER Protein Processing Under Oxidative Stress: Implications and Prevention

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Elevated levels of mitochondrial nitrosative stress have been associated with the pathogenesis of both Parkinson’s and Alzheimer’s diseases. The mechanism involves catalytic poisoning of the endoplasmic reticulum (ER)—resident oxidoreductase chaperone, protein disulfide isomerase (PDI), and the subsequent accumulation of ER-processed substrate proteins. Using a model system to mimic mitochondrial oxidative and nitrosative stress, we demonstrate a PDI-independent mechanism whereby reactive oxygen species (ROS) compromise regeneration rates of disulfide bond-containing ER-processed proteins. Under ROS-duress, the secretion-destined traffic adopts disulfide-exposed structures making the protein flux retrotranslocation biased. We also demonstrate that ROS-compromised protein maturation rates can be rescued by the polyphenol ellagic acid (EA). Our results are significant in that they reveal an additional mechanism which could promote neurodegenerative disorders. Furthermore, our data reveal that EA possesses therapeutic potential as a lead prophylactic agent against oxidative/nitrosative stress-related neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Narayan, M., Welker, E., Wedemeyer, W. J., & Scheraga, H. A. (2000). Oxidative folding of proteins. Accounts of Chemical Research, 33, 737–820.

    Article  Google Scholar 

  2. Woycechowsky, K. J., & Raines, R. T. (2000). Native disulfide bond formation in proteins. Current Opinion in Chemical Biology, 4, 533–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arolas, J. L., Aviles, F. X., Chang, J. Y., & Ventura, S. (2006). Folding of small disulfide-rich proteins: clarifying the puzzle. Trends in Biochemical Sciences, 31, 292–301.

    Article  CAS  PubMed  Google Scholar 

  4. Wedemeyer, W. J., Welker, E., Narayan, M., & Scheraga, H. A. (2000). Disulfide bonds and protein folding. Biochemistry, 39, 4207–4216.

    Article  CAS  PubMed  Google Scholar 

  5. Welker, E., Wedemeyer, W. J., Narayan, M., & Scheraga, H. A. (2001). Coupling of conformational folding and disulfide-bond reactions in oxidative folding of proteins. Biochemistry, 40, 9059–9064.

    Article  CAS  PubMed  Google Scholar 

  6. Welker, E., Narayan, M., Wedemeyer, W. J., & Scheraga, H. A. (2001). Structural determinants of oxidative folding in proteins. Proceedings of the National Academy of Sciences, 98, 2312–2316.

    Article  CAS  Google Scholar 

  7. Tu, B. P., & Weissman, J. S. (2004). Oxidative protein folding in eukaryotes: mechanisms and consequences. Journal of Cell Biology, 164, 341–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wilkinson, B., & Gilbert, H. F. (2004). Protein disulfide isomerase. Biochimica et Biophysica Acta, 1699, 35–44.

    Article  CAS  PubMed  Google Scholar 

  9. Tian, G., Xiang, S., Noiva, R., Lennarz, W. J., & Schindelin, H. (2006). The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Cell, 124, 61–73. Erratum in: Cell, 124 (2006) 1085–1088.

    Article  CAS  PubMed  Google Scholar 

  10. Gilbert, H. F. (1998). Protein disulfide isomerase. Methods in Enzymology, 290, 26–50.

    Article  CAS  PubMed  Google Scholar 

  11. Uehara, T., Nakamura, T., Yao, D., Shi, Z. Q., Gu, Z., Ma, Y., et al. (2006). S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature, 441, 513–517.

    Article  CAS  PubMed  Google Scholar 

  12. Kabiraj, P., Marin, E. J., Varela-Ramirez, A., Zubia, E., & Narayan, M. (2014). Ellagic acid mitigates SNO-PDI induced aggregation of parkinsonian biomarkers. ACS Chemical Neuroscience, 5, 1209–1220.

    Article  CAS  PubMed  Google Scholar 

  13. Kabiraj, P., Pal, R., Varela-Ramirez, A., Miranda, M., & Narayan, M. (2012). Nitrosative stress mediated misfolded protein aggregation mitigated by Na-d-β-hydroxybutyrate intervention. Biochemical and Biophysical Research Communications, 426, 438–444.

    Article  CAS  PubMed  Google Scholar 

  14. Pal, R., Miranda, M., & Narayan, M. (2011). Nitrosative stress-induced Parkinsonian Lewy-like aggregates prevented through polyphenolic phytochemical analog intervention. Biochemical and Biophysical Research Communications, 404, 324–329.

    Article  CAS  PubMed  Google Scholar 

  15. Benham, A. M. (2012). The protein disulfide isomerase (pdi) family: key players in health and disease. Antioxidants & Redox Signaling, 16, 781–789.

    Article  CAS  Google Scholar 

  16. Benhar, M., Forrester, M. T., & Stamler, J. S. (2006). Nitrosative stress in the ER: A new role for S-nitrosylation in neurodegenerative diseases. ACS Chemical Biology, 1, 355–358.

    Article  PubMed  Google Scholar 

  17. Nakamura, T., Prikhodko, O. A., Pirie, E., Nagar, S., Akhtar, M. W., Oh, C. K., et al. (2015). Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases. Neurobiology of Disease,. doi:10.1016/j.nbd.2015.03.017.

    Google Scholar 

  18. Jeon, G. S., Nakamura, T., Lee, J. S., Choi, W. J., Ahn, S. W., Lee, K. W., et al. (2014). Potential effect of S-nitrosylated protein disulfide isomerase on mutant SOD1 aggregation and neuronal cell death in amyotrophic lateral sclerosis. Molecular Neurobiology, 49, 796–807.

    Article  CAS  PubMed  Google Scholar 

  19. Gu, Z., Nakamura, T., & Lipton, S. A. (2010). Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Molecular Neurobiology, 41, 55–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Conway, M. E., & Harris, M. (2015). S-nitrosylation of the thioredoxin-like domains of protein disulfide isomerase and its role in neurodegenerative conditions. Frontiers in Chemistry, 3, 27.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nakamura, T., Prikhodko, O. A., Pirie, E., Nagar, S., Akhtar, M. W., Oh, C. K., et al. (2015). Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases. Neurobiology of Disease,. doi:10.1016/j.nbd.2015.03.017.

    Google Scholar 

  22. Chaudhari, N., Talwar, P., Parimisetty, A., Lefebvre d’Hellencourt, C., & Ravanan, P. (2014). A molecular web: Endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neuroscience, 8, 213.

    Article  Google Scholar 

  23. Wang, Y. H., & Narayan, M. (2008). pH dependence of the isomerase activity of protein disulfide isomerase: Insights into its functional relevance. Protein Journal, 27, 181–185.

    Article  PubMed  Google Scholar 

  24. Pal, R., Cristan, E. A., Schnittker, K., & Narayan, M. (2010). Rescue of ER oxidoreductase function through polyphenolic phytochemical intervention: implications for subcellular traffic and neurodegenerative disorders. Biochemical and Biophysical Research Communications, 392, 567–571.

    Article  CAS  PubMed  Google Scholar 

  25. Fink, M., Nieves, P., Chang, S., & Narayan, M. (2008). Non-redox-active small-molecules can accelerate oxidative protein folding by novel mechanisms. Biophysical Chemistry, 132, 104–109.

    Article  CAS  PubMed  Google Scholar 

  26. Hseu, Y. C., Chou, C. W., Senthil Kumar, K. J., Fu, K. T., Wang, M. H., Hsu, L. S., et al. (2012). Ellagic acid protects human keratinocyte (HaCaT) cells against UVA-induced oxidative stress and apoptosis through the upregulation of the HO-1 and Nrf-2 antioxidant genes. Food and Chemical Toxicology, 50, 1245–1255.

    Article  CAS  PubMed  Google Scholar 

  27. Kilic, I., Yeşiloğlu, Y., & Bayrak, Y. (2014). Spectroscopic studies on the antioxidant activity of ellagic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 130, 447–452. doi:10.1016/j.saa.2014.04.052.

    Article  CAS  Google Scholar 

  28. Sirimulla, S., Bailey, J. B., Vegesna, R., & Narayan, M. (2013). Halogen interactions in protein-ligand complexes: implications of halogen bonding for rational drug design. Journal of Chemical Information and Modeling, 53, 2781–2791.

    Article  CAS  PubMed  Google Scholar 

  29. Sirimulla, S., Pal, R., Raparla, M., Bailey, J. B., Duran, R., Altamirano, A. M., et al. (2012). Identification of novel nitrosative stress inhibitors through virtual screening and experimental evaluation. Molecular Informatics, 31, 167–172.

    Article  CAS  Google Scholar 

  30. Rothwarf, D. M., & Scheraga, H. A. (1993). Regeneration of bovine pancreatic ribonuclease A. 1. Steady-state distribution. Biochemistry, 32(10), 2671–2679.

    Article  CAS  PubMed  Google Scholar 

  31. Rothwarf, D. M., Li, Y., & Scheraga, H. A. (1998). Regeneration of bovine pancreatic ribonuclease A: Identification of two nativelike three-disulfide intermediates involved in separate pathways. Biochemistry, 37(11), 3760–3766.

    Article  CAS  PubMed  Google Scholar 

  32. Wang, Y.-H., & Narayan, M. (2008). pH dependence of the isomerase activity of protein disulfide isomerase: insights into its functional relevance. Protein Journal, 27(3), 181–185.

    Article  PubMed  Google Scholar 

  33. Pal, R., Cristan, E. A., Schnittker, K., & Narayan, M. (2010). Rescue of ER oxidoreductase function through polyphenolic phytochemical intervention: implications for subcellular traffic and neurodegenerative disorders. Biochemical and Biophysical Research Communications, 392(4), 567–571.

    Article  CAS  PubMed  Google Scholar 

  34. Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149, 1060–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Skouta, R., Dixon, S. J., Wang, J., et al. (2014). Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. Journal of the American Chemical Society, 136, 4551–4556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199–1200.

    Article  CAS  Google Scholar 

  37. Xu, G., Narayan, M., & Scheraga, H. A. (2005). The oxidative folding rate of bovine pancreatic ribonuclease is enhanced by a covalently attached oligosaccharide. Biochemistry, 44(28), 9817–9823.

    Article  CAS  PubMed  Google Scholar 

  38. Mattson, M. P. (2006). Nitro-PDI incites toxic waste accumulation. Nature Neuroscience, 9(7), 865–867.

    Article  CAS  PubMed  Google Scholar 

  39. Uehara, T., Nakamura, T., Yao, D., Shi, Z. Q., Gu, Z., Ma, Y., et al. (2006). S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature, 441(7092), 513–517.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to express special thanks to the staff of the Cytometry, Screening, and Imaging Core Facility of the Border Biomedical Research Center at The University of Texas at El Paso (UTEP). This facility is supported by Grant # 2G12MD007592 and Grant # 5G12MD007592 from the Research Centers in Minority Institutions program of the National Institutes on Minority Health and Health Disparities. In addition, M.N. would like to thank Dr. Eddie Vazquez and Mrs. Holly Vazquez (The El Paso Pain Center) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rachid Skouta or Mahesh Narayan.

Additional information

Carlos Valenzuela and Daniella Sisniega have been contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalil, M.F., Valenzuela, C., Sisniega, D. et al. ER Protein Processing Under Oxidative Stress: Implications and Prevention. Cell Biochem Biophys 74, 213–220 (2016). https://doi.org/10.1007/s12013-016-0726-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-016-0726-9

Keywords

Navigation