Skip to main content

Advertisement

Log in

Subcutaneous Injections of the Mannose-Sensitive Hemagglutination Pilus Strain of Pseudomonas aeruginosa Stimulate Host Immunity, Reduce Bladder Cancer Size and Improve Tumor Survival in Mice

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We wished to evaluate the effects of Pseudomonas aeruginosa (mannose-sensitive hemagglutination pilus strain, PA-MSHA) as an immunostimulating and anti-tumor agent for treatment of bladder cancer. Immunostimulating effects were assessed by the in vitro proliferation assay of murine splenic lymphocytes. Anti-tumor effects were studied in a subcutaneous tumor model established in female C57BL/6 mice using the MB49 bladder cell line. These mice received subcutaneous injections of normal saline (control group) or PA-MSHA (high, medium, or low dose, respectively, 1.6–2.0 × 109, 3.2– .0 × 108, 6.4–8.0 × 107 CFU/ml) twice a week for 3 weeks. Mice survival, tumor volume, vascular endothelial growth factor (VEGF) expression, microvessel density (MVD), serum levels of TNF-α and IFN-γ, and blood CD4+ /CD8+ counts were the study outcomes. We observed that PA-MSHA promoted the growth of splenic lymphocytes in vitro. In the murine tumor model, PA-MSHA prolonged mice survival and reduced tumor growth. Furthermore, VEGF and MVD were also diminished by PA-MSHA. Mice that received high and medium dose of PA-MSHA had significantly higher serum levels of IFN-γ and TNF-α (days 21 and 28), and higher levels of CD4+ /CD8+ cells (days 21 and 28). In conclusion, PA-MSHA exerts beneficial effects on increasing proliferation of murine splenic lymphocytes in vitro and inhibits the growth of bladder tumor in a murine model. Therefore, PA-MSHA may be useful an immunostimulating and anti-tumor agent for bladder cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

P. aeruginosa :

Pseudomonas aeruginosa

VEGF:

Vascular endothelial growth factor

MVD:

Microvessel density

TURBT:

Transurethral resection of bladder tumor

TCC:

Transitional cell carcinoma cell

References

  1. Siegel, R., Naishadham, D., & Jemal, A. (2013). Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 63, 11–30.

    Google Scholar 

  2. Parkin, D. M. (2008). The global burden of urinary bladder cancer. Scandinavian Journal of Urology and Nephrology. Supplementum, 2008, 12–20.

    Article  Google Scholar 

  3. Pfost, B., Seidl, C., Autenrieth, M., Saur, D., Bruchertseifer, F., Morgenstern, A., et al. (2009). Intravesical alpha-radioimmunotherapy with 213Bi-anti-EGFR-mAb defeats human bladder carcinoma in xenografted nude mice. Journal of Nuclear Medicine, 50, 1700–1708.

    Article  CAS  PubMed  Google Scholar 

  4. Babjuk, M., Oosterlinck, W., Sylvester, R., Kaasinen, E., Bohle, A., Palou-Redorta, J., & Roupret, M. (2012). [EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder, the 2011 update]. Actas Urologicas Espanolas, 36, 389–402. (in Spanish).

    CAS  PubMed  Google Scholar 

  5. Lamm, D. L. (1992). Complications of bacillus Calmette-Guerin immunotherapy. Urologic Clinics of North America, 1992(19), 565–572.

    Google Scholar 

  6. Bergers, G., & Benjamin, G. (2003). Tumorigenesis and the angiogenic switch. Nature Reviews Cancer, 3, 401–410.

    Article  CAS  PubMed  Google Scholar 

  7. Ranieri, G., Patruno, R., Ruggieri, E., Montemurro, S., Valerio, P., & Ribatti, D. (2006). Vascular endothelial growth factor (VEGF) as a target of bevacizumab in cancer: From the biology to the clinic. Current Medicinal Chemistry, 13, 1845–1857.

    Article  CAS  PubMed  Google Scholar 

  8. Jain, R. K. (2005). Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science, 2005(307), 58–62.

    Article  Google Scholar 

  9. Chen, C. T., & Hung, M. C. (2013). Beyond anti-VEGF: Dual-targeting antiangiogenic and antiproliferative therapy. American Journal of Translational Research, 2013(5), 393–403.

    Google Scholar 

  10. Porwoll, J. M., Gebel, H. M., Rodey, G. E., & Markham, R. B. (1983). In vitro response of human T cells to Pseudomonas aeruginosa. Infection and Immunity, 40, 670–674.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Lee, N., Ahn, B., Jung, S. B., Kim, Y. G., Kim, H., & Park, W. J. (2000). Conformation-dependent antibody response to Pseudomonas aeruginosa outer membrane proteins induced by immunization in humans. FEMS Immunology and Medical Microbiology, 27, 79–85.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, H., Wang, S., Shen, L., Wang, W., Zhao, F., & Cao, T. (2013). Effects of Pseudomonas aeruginosa mannose-sensitive hemagglutinin (PA-MSHA) pretreatment on septic rats. International Immunopharmacology, 17, 836–842.

    Article  CAS  PubMed  Google Scholar 

  13. Summerhayes, I. C., & Franks, L. M. (1979). Effects of donor age on neoplastic transformation of adult mouse bladder epithelium in vitro. Journal of the National Cancer Institute, 1979(62), 1017–1023.

    Google Scholar 

  14. Stein, J. P., Lieskovsky, G., Cote, R., Groshen, S., Feng, A. C., Boyd, S., et al. (2001). Radical cystectomy in the treatment of invasive bladder cancer: Long-term results in 1,054 patients. Journal of Clinical Oncology, 19, 666–675.

    CAS  PubMed  Google Scholar 

  15. Friedrichs, K., Gluba, S., Eidtmann, H., & Jonat, W. (1993). Overexpression of p53 and prognosis in breast cancer. Cancer, 72, 3641–3647.

    Article  CAS  PubMed  Google Scholar 

  16. Liakou, C. I., Kamat, A., Tang, D. N., Chen, H., Sun, J., Troncoso, P., et al. (2008). CTLA-4 blockade increases IFNgamma-producing CD4+ ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proceedings of the National Academy of Sciences of the United States of America, 105, 14987–14992.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Zhai, Z., Wang, Z., Fu, S., Lu, J., Wang, F., Li, R., et al. (2012). Antitumor effects of bladder cancer-specific adenovirus carrying E1A-androgen receptor in bladder cancer. Gene Therapy, 19, 1065–1074.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Brosman, S. A. (1992). Bacillus Calmette-Guerin immunotherapy. Techniques and results. Urologic Clinics of North America, 1992(19), 557–564.

    Google Scholar 

  19. Morales, A., Eidinger, D., & Bruce, A. W. (1976). Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. Journal of Urology, 116, 180–183.

    CAS  PubMed  Google Scholar 

  20. Li, Z., Hao, D., Zhang, H., Ren, L., Yang, Y., Li, L., et al. (2000). [A clinical study on PA-MSHA vaccine used for adjuvant therapy of lymphoma and lung cancer]. Hua Xi Yi Ke Da Xue Xue Bao., 31, 334–337. (in Chinese).

    CAS  PubMed  Google Scholar 

  21. Cao, Z., Shi, L., Li, Y., Wang, J., Wang, D., Wang, G., et al. (2009). Pseudomonas aeruginosa: Mannose sensitive hemagglutinin inhibits the growth of human hepatocarcinoma cells via mannose-mediated apoptosis. Digestive Diseases and Sciences, 54, 2118–2127.

    Article  PubMed  Google Scholar 

  22. Ganss, R., Ryschich, E., Klar, E., Arnold, B., & Hammerling, G. J. (2002). Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer Research, 62, 1462–1470.

    CAS  PubMed  Google Scholar 

  23. Blankenstein, T., & Qin, Z. (2003). The role of IFN-gamma in tumor transplantation immunity and inhibition of chemical carcinogenesis. Current Opinion in Immunology, 15, 148–154.

    Article  CAS  PubMed  Google Scholar 

  24. Gao, Y., Yang, W., Pan, M., Scully, E., Girardi, M., Augenlicht, L. H., et al. (2003). Gamma delta T cells provide an early source of interferon gamma in tumor immunity. Journal of Experimental Medicine, 198, 433–442.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Gan, Y. H., Zhang, Y., Khoo, H. E., & Esuvaranathan, K. (1999). Antitumour immunity of Bacillus Calmette-Guerin and interferon alpha in murine bladder cancer. European Journal of Cancer, 35, 1123–1129.

    Article  CAS  PubMed  Google Scholar 

  26. Scott, P., Pearce, E., Cheever, A. W., Coffman, R. L., & Sher, A. (1989). Role of cytokines and CD4+ T-cell subsets in the regulation of parasite immunity and disease. Immunological Reviews, 112, 161–182.

    Article  CAS  PubMed  Google Scholar 

  27. Arum, C. J., Anderssen, E., Viset, T., Kodama, Y., Lundgren, S., Chen, D., & Zhao, C. M. (2010). Cancer immunoediting from immunosurveillance to tumor escape in microvillus-formed niche: A study of syngeneic orthotopic rat bladder cancer model in comparison with human bladder cancer. Neoplasia, 12, 434–442.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ratliff, T. L., Ritchey, J. K., Yuan, J. J., Andriole, G. L., & Catalona, W. J. (1993). T-cell subsets required for intravesical BCG immunotherapy for bladder cancer. Journal of Urology, 150, 1018–1023.

    CAS  PubMed  Google Scholar 

  29. Quezada, S. A., & Peggs, K. S. (2011). Tumor-reactive CD4+ T cells: Plasticity beyond helper and regulatory activities. Immunotherapy, 2011(3), 915–917.

    Article  Google Scholar 

  30. Zlotta, A. R., Drowart, A., Van Vooren, J. P., de Cock, M., Pirson, M., Palfliet, K., et al. (1997). Evolution and clinical significance of the T cell proliferative and cytokine response directed against the fibronectin binding antigen 85 complex of bacillus Calmette-Guerin during intravesical treatment of superficial bladder cancer. Journal of Urology, 157, 492–498.

    Article  CAS  PubMed  Google Scholar 

  31. Dvorak, H. F., Brown, L. F., Detmar, M., & Dvorak, A. M. (1995). Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. American Journal of Pathology, 146, 1029–1039.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Gong, C., Stoletov, K. V., & Terman, B. I. (2004). VEGF treatment induces signaling pathways that regulate both actin polymerization and depolymerization. Angiogenesis, 7, 313–321.

    Article  CAS  PubMed  Google Scholar 

  33. Streeter, E. H., & Crew, J. P. (2001). Angiogenesis, angiogenic factor expression and prognosis of bladder cancer. Anticancer Research, 2001(21), 4355–4363.

    Google Scholar 

  34. Motzer, R. J., Hutson, T. E., Tomczak, P., Michaelson, M. D., Bukowski, R. M., Oudard, S., et al. (2009). Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. Journal of Clinical Oncology, 27, 3584–3590.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Wang, J., Sun, Y., Liu, Y., Yu, Q., Zhang, Y., Li, K., et al. (2005). [Results of randomized, multicenter, double-blind phase III trial of rh-endostatin (YH-16) in treatment of advanced non-small cell lung cancer patients]. Zhongguo Fei Ai Za Zhi., 8, 283–290. (in Chinese).

    PubMed  Google Scholar 

  36. Thielemann, A., Baszczuk, A., Kopczynski, Z., Kopczynski, P., & Grodecka-Gazdecka, S. (2013). Clinical usefulness of assessing VEGF and soluble receptors sVEGFR-1 and sVEGFR-2 in women with breast cancer. Annals of Agricultural and Environmental Medicine, 20, 293–297.

    CAS  PubMed  Google Scholar 

  37. Kopparapu, P. K., Boorjian, S. A., Robinson, B. D., Downes, M., Gudas, L. J., Mongan, N. P., & Persson, J. L. (2013). Expression of VEGF and its receptors VEGFR1/VEGFR2 is associated with invasiveness of bladder cancer. Anticancer Research, 33, 2381–2390.

    CAS  PubMed  Google Scholar 

  38. Chan, E. S., Patel, A. R., Hansel, D. E., Larchian, W. A., & Heston, W. D. (2012). Sunitinib malate provides activity against murine bladder tumor growth and invasion in a preclinical orthotopic model. Urology, 80, e731–735.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Central University basic business expense special fund (lzujbky-2011-142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-ping Wang.

Additional information

Tao Li and Li Yang have contributed equally to this study and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Yang, L., Fu, Sj. et al. Subcutaneous Injections of the Mannose-Sensitive Hemagglutination Pilus Strain of Pseudomonas aeruginosa Stimulate Host Immunity, Reduce Bladder Cancer Size and Improve Tumor Survival in Mice. Cell Biochem Biophys 73, 245–252 (2015). https://doi.org/10.1007/s12013-015-0611-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0611-y

Keywords

Navigation