Skip to main content
Log in

Attenuation of Streptozotocin-Induced Lipid Profile Anomalies in the Heart, Brain, and mRNA Expression of HMG-CoA Reductase by Diosgenin in Rats

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Diabetes mellitus is associated with significant morbidity and mortality that contributes to pathogenesis of cardiovascular diseases. Diosgenin, a naturally occurring aglycone, is present abundantly in fenugreek. The steroidal saponin is being used as a traditional medicine for diabetes. The present study has investigated the effects of diosgenin on lipid profile in the heart and brain, mRNA expression, and hepatic HMG-CoA reductase (HMGR) activity of streptozotocin-induced diabetic rats. In our study, diosgenin was administered (40 mg/kg b.w.) orally for 45 days to control animals and experimentally induced diabetic rats. The effects of diosgenin on glucose, plasma insulin, cholesterol, triglycerides, free fatty acids, and phospholipids (PLs) in the heart and brain were studied. The levels of glucose, cholesterol, triglycerides, free fatty acids, PLs, and HMGR activity were increased significantly (P < 0.05) whereas plasma insulin level was decreased in diabetic rats. Administration of diosgenin to diabetic rats significantly reduced blood glucose, cholesterol, triglycerides, free fatty acids, PLs levels, and also HMGR activity. In addition, the plasma insulin level was increased in diosgenin-treated diabetic rats. The above findings were correlated with histological observations of the heart and brain. The results showed that administration of diosgenin remarkably increased plasma insulin level with absolute reduction of blood glucose, lipid profile, and HMGR level when compared to diabetic control rats. The results have suggested that diosgenin prevents hypercholesterolemia and hepatosteatosis by modulation of enzymatic expression that is associated with cholesterol metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

STZ:

Streptozotocin

CVD:

Cardiovascular diseases

VLDL:

Very low density lipoproteins

References

  1. Farhad, R., Danesh, D., Yashpal, S., & Kanwar, M. (2004). Modulatory effects of HMG-CoA reductase inhibitors in diabetic microangiopathy. The FASEB Journal, 18, 806–810.

    Google Scholar 

  2. Kim, S. H., Hyun, S. H., & Choung, S. Y. (2006). Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. Journal of Ethnopharmacology, 104, 119–123.

    Article  PubMed  Google Scholar 

  3. Farag, Y. M. K., & Gaballa, M. R. (2011). Diabesity: An overview of a rising epidemic. Nephrology, Dialysis, Transplantation, 26(1), 28–35.

    Article  PubMed  Google Scholar 

  4. Reasner, C. A. (2008). Reducing cardiovascular complications of diabetes by targeting multiple risk factors. Journal of Cardiovascular Pharmacology, 52, 136–144.

    Article  CAS  PubMed  Google Scholar 

  5. Nagappa, A. N., Thakurdesai, P. A., Rao, N. V., & Singh, J. (2003). Antidiabetic activity of Termanalia catappa Linn fruits. Journal of Ethnopharmacology, 88, 45–50.

    Article  CAS  PubMed  Google Scholar 

  6. Deedwania, P. C., Hunninghake, D. B., & Bays, H. (2004). Effects of lipid-altering treatment in diabetes mellitus and metabolic syndrome. American Journal of Cardiology, 93, 18C–20C.

    Article  CAS  PubMed  Google Scholar 

  7. Tiwari, A. K., & Madhusudana, R. J. (2002). Diabetes mellitus and multiple therapeutic approaches of phytochemicals: Present status and future prospects. Current Science, 83, 30–38.

    CAS  Google Scholar 

  8. Erukainure, O. L., Abovwe, J. A., Adefegha, A. S., & Egwuche, R. U. (2011). Antilipemic and hypocholesteremic activities of Globimetula braunii in rats. Experimental and Toxicologic Pathology, 63, 657–661.

    Article  PubMed  Google Scholar 

  9. Pushparaj, P., Tan, C. H., & Tan, B. K. H. (2000). Effects of Averrhoa bilimbi leaf extract on blood glucose and lipids in streptozotocin-diabetic rats. Journal of Ethnopharmacology, 72, 69–76.

    Article  CAS  PubMed  Google Scholar 

  10. Superko, H. R. (1989). Drug therapy and the prevention of atherosclerosis in humans. American Journal of Cardiology, 64, 31G–38G.

    Article  CAS  PubMed  Google Scholar 

  11. Jagadeesan, A. J., Langeswaran, K., & Gowtham Kumar, S. (2013). Chemopreventive potential of diosgenin on modulating glycoproteins, tca cycle enzymes, carbohydrate metabolising enzymes and biotransformation enzymes against n-methyl-n-nitrosourea induced mammary carcinogenesis. International Journal of Pharmacy and Pharmaceutical Sciences, 5, 575–582.

    Google Scholar 

  12. Pari, L., Monisha, P., & Mohamed Jalaludeen, A. (2012). Beneficial role of diosgenin on oxidative stress in aorta of streptozotocin induced diabetic rats. European Journal of Pharmacology, 691, 143–150.

    Article  CAS  PubMed  Google Scholar 

  13. Mastan, S., & Eswar Kumar, K. (2009). Effect of ritonavir on the pharmacodynamics of gliclazide in animal models. Diabetologia Croatia, 38, 105–113.

    Google Scholar 

  14. Pulido, N., Suarez, A., & Casanova, B. (1997). Glyclazide treatment of streptozotocin diabetic rats restores GLUT4 protein content and basal glucose uptake in skeletal muscle. Metabolism, 46, 10–13.

    Article  CAS  PubMed  Google Scholar 

  15. Folch, C., Lees, M., & Solane, S. G. H. (1957). A simple method for isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, 497–509.

    CAS  PubMed  Google Scholar 

  16. Zlatkis, A., Zak, B., & Boyle, G. J. (1953). A simple method for determination of serum cholesterol. Clinic Journal of Medicine, 41, 486–492.

    CAS  Google Scholar 

  17. Fossati, P., & Lorenzo, P. (1982). Serum triglycerides determined calorimetrically with an enzyme that produces hydrogen peroxide. Clinical Chemistry, 28, 2077–2080.

    CAS  PubMed  Google Scholar 

  18. Falholt, K., Falholt, W., & Lund, B. (1973). An easy colorimetric method for routine determination of free fatty acids in plasma. Clinica Chimica Acta, 46, 105–111.

    Article  CAS  Google Scholar 

  19. Zilversmit, D. B., & Davis, A. K. (1950). Microdetermination of phospholipids by TCA precipitation. Journal of Laboratory and Clinical Medicine, 35, 155–159.

    CAS  PubMed  Google Scholar 

  20. Shapiro, D. J., Nordstrom, J. L., Mitschelen, J. J., Rodwell, V. W., & Schimke, R. T. (1974). Microassay for 3-hydroxy- 3-methylglutaryl-CoA reductase in rat liver and in L-cell fibroblasts. Biochimica et Biophysica Acta, 370, 369–377.

    Article  CAS  PubMed  Google Scholar 

  21. Proks, P., Reimann, F., Green, N., Gribble, F., & Aschroft, F. (2002). Sulfonyl urea stimulation in insulin secretion. Diabetes, 51, S368–S376.

    Article  CAS  PubMed  Google Scholar 

  22. Satheesh, A., & Pari, L. (2008). Effect of pterostilbene on lipids and lipid profiles in streptozotocin–nicotinamide induced type 2 diabetes mellitus. Journal of Applied Biomedicine, 6, 31–37.

    CAS  Google Scholar 

  23. Chauhan, U. P. S., Jagi, C. B., & Singh, V. N. (1987). Incorporation of 32Pi into plasma phosphatidylcholine of diabetic rats. Indian Journal of Nuclear Medicine, 2, 92–98.

    CAS  Google Scholar 

  24. Kang, T. H., Moon, E., Hong, B. N., Choi, S. Z., Son, M., Park, J. H., & Kim, S. Y. (2011). Diosgenin from Dioscoreanipponica ameliorates diabetic neuropathy by inducing nerve growth factor. Biological and Pharmaceutical Bulletin, 34, 1493–1498.

    Article  CAS  PubMed  Google Scholar 

  25. Cohn, R. M., & Roth, K. S. (1996). Lipid and lipoprotein metabolism. Biochemistry and disease. Baltimore: Williams and Wilkins Publishers.

    Google Scholar 

  26. Draznin, B., & Eckel, R. H. (1993). Diabetes and Atherosclerosis. Molecular Basis and Clinical Aspects (Vol. 12, p. 203). New York: Elsevier.

    Google Scholar 

  27. Frayn, K. N. (1993). Insulin resistance and lipid metabolism. Current Opinion in Lipidology, 4, 197–204.

    Article  CAS  Google Scholar 

  28. Ashokkumar, N., Pari, L., Manimekalai, A., & Selvaraju, K. (2005). Effect of N-benzoyl-d-phenylalanine on streptozotocin induced changes in the lipids and lipoprotein profile in rats. Journal of Pharmacy and Pharmacology, 57, 359–366.

    Article  CAS  PubMed  Google Scholar 

  29. Pari, L., & Ashokkumar, N. (2005). Effect of N-benzoyl-d-phenyalanine on lipid profile in liver of neonatal streptozotocin diabetic rats. Fundamental & Clinical Pharmacology, 19, 563–568.

    Article  CAS  Google Scholar 

  30. Saravanan, G., & Ponmurugan, P. (2011). Ameliorative potential of S-allylcysteine on oxidative stress in STZ induced diabetic rats. Chemico-Biological Interactions, 189, 100–106.

    Article  CAS  PubMed  Google Scholar 

  31. Saravanan, G., & Ponmurugan, P. (2012). Ameliorative potential of S-allylcysteine: Effect on lipid profile and changes in tissue fatty acid composition in experimental diabetes. Experimental and Toxicologic Pathology, 64, 639–644.

    Article  CAS  PubMed  Google Scholar 

  32. Braun, J. E., & Severson, D. L. (1992). Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochemical Journal, 287, 337–347.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Palsamy, P., & Subramanian, S. (2008). Resveratrol, a natural phytoalexin, normalizes hyperglycemia in streptozotocin nicotinamide induced experimental diabetic rats. Biomedicine & Pharmacotherapy, 62, 598–605.

    Article  CAS  Google Scholar 

  34. Kuwahara, Y., Yanagishita, T., Konno, N., & Katagiri, T. (1997). Changes in microsomal membrane phospholipids and fatty acids and in activities of membrane-bound enzymes in diabetic rat heart. Basic Research in Cardiology, 92, 214–222.

    Article  CAS  PubMed  Google Scholar 

  35. Yagi, K. (1987). Lipid peroxides and human diseases. Chemistry and Physics of Lipids, 45, 337–351.

    Article  CAS  PubMed  Google Scholar 

  36. Anandh Babu, P. V., Sabitha, K. E., & Shyamaladevi, C. S. (2006). Green tea impedes dyslipidemia, lipid peroxidation, protein glycation and ameliorates Ca2+-ATPase and Na+/K+-ATPase activity in the heart of streptozotocin-diabetic rats. Chemico-Biological Interactions, 162, 157–164.

    Article  Google Scholar 

  37. Akiyama, S., Katsumata, S. I., & Suzuki, K. (2009). Hypoglycemic and hypolipidemic effect of hesperidine. Bioscience, Biotechnology, and Biochemistry, 73, 2779–2782.

    Article  CAS  PubMed  Google Scholar 

  38. Rydgren, T., & Sandler, S. (2009). The protective effect of simvastatin against low dose streptozotocin induced type 1 diabetes in mice is independent of inhibition of HMG-CoA reductase. Biochemical and Biophysical Research Communications, 379, 1076–1079.

    Article  CAS  PubMed  Google Scholar 

  39. Ness, G. C., Holland, R. C., & Lopez, D. (2006). Selective compensatory induction of hepatic HMG-CoA reductase in response to inhibition of cholesterol absorption. Experimental Biology and Medicine, 231, 559–565.

    CAS  PubMed  Google Scholar 

  40. Kaleem, M., Asif, M., Ahmed, Q., & Bano, B. (2006). Antidiabetic and antioxidant activity of Annona squamosa extract in streptozotozin induced diabetic rats. Singapore Medical Journal, 47, 670–675.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kexiang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, S., Xu, R., Li, D. et al. Attenuation of Streptozotocin-Induced Lipid Profile Anomalies in the Heart, Brain, and mRNA Expression of HMG-CoA Reductase by Diosgenin in Rats. Cell Biochem Biophys 72, 741–749 (2015). https://doi.org/10.1007/s12013-015-0525-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0525-8

Keywords

Navigation