Skip to main content
Log in

Protective Effects of Epigallocatechin-3 Gallate on Atrial Electrical and Structural Remodeling in a Rabbit Rapid Atrial Pacing Model

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Epigallocatechin-3 gallate (EGCG) is the major catechin in green tea. The aim of this study is to investigate the effects of EGCG on atrial electrical and structural remodeling in a rabbit rapid atrial pacing (RAP) model. New Zealand white rabbits were subjected to RAP with or without EGCG treatment. The atrial electrophysiology was studied. ELISA, Western blots, and RT-PCR were performed to determine the level of the inflammation markers, oxidative stress, and fibrogenic agents. Atrial tissue was stained with Masson’s trichrome stain for fibrosis detection. RAP rabbits showed a significantly shorter atrial effective refractory period than control rabbits. Higher AF inducibility and longer AF duration were seen in the RAP group. AERP of rabbits received high dose EGCG were prolonged compared to RAP rabbits, and AF inducibility and duration of rabbits received high dose EGCG were lower. RAP rabbits have higher inflammation markers, higher oxidative stress, and more significant fibrosis within atrium, while high dose intervention of EGCG can lower the inflammation, oxidative stress, and fibrosis induced by RAP. Results showed that EGCG have protective effects on atrial electrical and structural remodeling in a rabbit RAP model in terms of attenuating of inflammation and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Page, R. L. (2004). Clinical practice. Newly diagnosed atrial fibrillation. New England Journal of Medicine, 351, 2408–2416.

    Article  CAS  PubMed  Google Scholar 

  2. Beyerbach, D. M., & Zipes, D. P. (2004). Mortality as an endpoint in atrial fibrillation. Heart Rhythm, 1, B8–B18. discussion B18-9.

    Article  PubMed  Google Scholar 

  3. Burstein, B., & Nattel, S. (2008). Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation. Journal of the American College of Cardiology, 51, 802–809.

    Article  CAS  PubMed  Google Scholar 

  4. Goudis, C. A., Kallergis, E. M., & Vardas, P. E. (2012). Extracellular matrix alterations in the atria: Insights into the mechanisms and perpetuation of atrial fibrillation. Europace, 14, 623–630.

    Article  PubMed  Google Scholar 

  5. Guo, Y., Lip, G. Y., & Apostolakis, S. (2012). Inflammation in atrial fibrillation. Journal of the American College of Cardiology, 60, 2263–2270.

    Article  CAS  PubMed  Google Scholar 

  6. Issac, T. T., Dokainish, H., & Lakkis, N. M. (2007). Role of inflammation in initiation and perpetuation of atrial fibrillation: A systematic review of the published data. Journal of the American College of Cardiology, 50, 2021–2028.

    Article  CAS  PubMed  Google Scholar 

  7. Korantzopoulos, P., Kolettis, T. M., Galaris, D., & Goudevenos, J. A. (2007). The role of oxidative stress in the pathogenesis and perpetuation of atrial fibrillation. International Journal of Cardiology, 115, 135–143.

    Article  PubMed  Google Scholar 

  8. Liu, T., Korantzopoulos, P., & Li, G. (2012). Antioxidant therapies for the management of atrial fibrillation. Cardiovascular Diagnosis and Therapy, 2, 298–307.

    PubMed Central  PubMed  Google Scholar 

  9. Islam, M. A. (2012). Cardiovascular effects of green tea catechins: Progress and promise. Recent Patents on Cardiovascular Drug Discovery, 7, 88–99.

    Article  CAS  PubMed  Google Scholar 

  10. Paquay, J. B., Haenen, G. R., Stender, G., et al. (2000). Protection against nitric oxide toxicity by tea. Journal of Agriculture and Food Chemistry, 48, 5768–5772.

    Article  CAS  Google Scholar 

  11. Ramesh, E., Geraldine, P., & Thomas, P. A. (2010). Regulatory effect of epigallocatechin gallate on the expression of C-reactive protein and other inflammatory markers in an experimental model of atherosclerosis. Chemico-Biological Interactions, 183, 125–132.

    Article  CAS  PubMed  Google Scholar 

  12. Shen, C. L., Samathanam, C., Tatum, O. L., et al. (2011). Green tea polyphenols avert chronic inflammation-induced myocardial fibrosis of female rats. Inflammation Research, 60, 665–672.

    Article  CAS  PubMed  Google Scholar 

  13. Nattel, S., Burstein, B., & Dobrev, D. (2008). Atrial remodeling and atrial fibrillation: Mechanisms and implications. Circulation: Arrhythmia and Electrophysiology, 1, 62–73.

    Google Scholar 

  14. Psychari, S. N., Apostolou, T. S., Sinos, L., et al. (2005). Relation of elevated C-reactive protein and interleukin-6 levels to left atrial size and duration of episodes in patients with atrial fibrillation. American Journal of Cardiology, 95, 764–767.

    Article  CAS  PubMed  Google Scholar 

  15. Conway, D. S., Buggins, P., Hughes, E., & Lip, G. Y. (2004). Relationship of interleukin-6 and C-reactive protein to the prothrombotic state in chronic atrial fibrillation. Journal of the American College of Cardiology, 43, 2075–2082.

    Article  CAS  PubMed  Google Scholar 

  16. Dernellis, J., & Panaretou, M. (2005). Effect of C-reactive protein reduction on paroxysmal atrial fibrillation. American Heart Journal, 150, 1064.

    Article  PubMed  Google Scholar 

  17. Lin, P. H., Lee, S. H., Su, C. P., & Wei, Y. H. (2003). Oxidative damage to mitochondrial DNA in atrial muscle of patients with atrial fibrillation. Free Radical Biology and Medicine, 35, 1310–1318.

    Article  CAS  PubMed  Google Scholar 

  18. Mihm, M. J., Yu, F., Carnes, C. A., et al. (2001). Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation, 104, 174–180.

    Article  CAS  PubMed  Google Scholar 

  19. Kostin, S., Klein, G., Szalay, Z., et al. (2002). Structural correlate of atrial fibrillation in human patients. Cardiovascular Research, 54, 361–379.

    Article  CAS  PubMed  Google Scholar 

  20. Xu, J., Cui, G., Esmailian, F., et al. (2004). Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation. Circulation, 109, 363–368.

    Article  CAS  PubMed  Google Scholar 

  21. Derakhchan, K., Li, D., Courtemanche, M., et al. (2001). Method for simultaneous epicardial and endocardial mapping of in vivo canine heart: Application to atrial conduction properties and arrhythmia mechanisms. Journal of Cardiovascular Electrophysiology, 12, 548–555.

    Article  CAS  PubMed  Google Scholar 

  22. Ko, W. C., Hong, C. Y., Hou, S. M., et al. (2011). Elevated expression of connective tissue growth factor in human atrial fibrillation and angiotensin II-treated cardiomyocytes. Circulation Journal, 75, 1592–1600.

    Article  CAS  PubMed  Google Scholar 

  23. Nakajima, H., Nakajima, H. O., Salcher, O., et al. (2000). Atrial but not ventricular fibrosis in mice expressing a mutant transforming growth factor-beta(1) transgene in the heart. Circulation Research, 86, 571–579.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by Youth Fund of the First Affiliated Hospital of Zhengzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jifa Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Zhang, X., Li, L. et al. Protective Effects of Epigallocatechin-3 Gallate on Atrial Electrical and Structural Remodeling in a Rabbit Rapid Atrial Pacing Model. Cell Biochem Biophys 71, 897–903 (2015). https://doi.org/10.1007/s12013-014-0280-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0280-2

Keywords

Navigation