Skip to main content

Advertisement

Log in

Transplantation of Adipose Tissue-Derived Stromal Cells Promotes the Survival of Venous-Congested Skin Flaps in Rabbit Ear

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Venous congestion after skin flap transplantation usually slows blood flow velocity and induces skin flap necrosis and surgical failure. Adipose tissue-derived stromal cells (ADSCs) can promote neovascularization and have been extensively applied in cell transplantation therapy and tissue regeneration. However, their function has not been reported in venous-congested skin flaps. In this study, rabbit ADSCs were isolated and identified. We established a rabbit ear venous-congested skin flap model and injected ADSCs into points along the midlines of skin flaps. The survival conditions of venous-congested skin flaps on postoperative day 7 showed that there was obvious swelling, hemorrhage, or necrosis in skin flaps of the control group, while the skin flap survival rate in the ADSC treatment group significantly increased. Hematoxylin and eosin (HE) staining results indicated that compared with the control group, thrombosis was significantly relieved and neovascularization was observed in the ADSC treatment group. Immunofluorescence revealed that the CD34 expression level and the number of capillaries significantly increased in the ADSC treatment group. In summary, ADSC transplantation promotes neovascularization in venous-congested skin flaps and skin flap survival. Therefore, ADSC transplantation may be an effective measure for promoting the survival of venous-congested skin flaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Miyawaki, T., Jackson, I. T., Elmazar, H., Bier, U. C., Barakat, K., Andrus, L., et al. (2002). The effect of low-molecular-weight heparin in the survival of a rabbit congested skin flap. Plastic and Reconstructive Surgery, 2002(109), 1994–1999.

    Article  Google Scholar 

  2. Lindroos, B., Suuronen, R., & Miettinen, S. (2011). The potential of adipose stem cells in regenerative medicine. Stem Cell Reviews, 2011(7), 269–291.

    Article  Google Scholar 

  3. Ning, H., Liu, G., Lin, G., Yang, R., Lue, T. F., & Lin, C. S. (2009). Fibroblast growth factor 2 promotes endothelial differentiation of adipose tissue-derived stem cells. The Journal of Sexual Medicine, 2009(6), 967–979.

    Article  Google Scholar 

  4. Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C. J., Bovenkerk, J. E., et al. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 2004(109), 1292–1298.

    Article  Google Scholar 

  5. Iwashima, S., Ozaki, T., Maruyama, S., Saka, Y., Kobori, M., Omae, K., et al. (2009). Novel culture system of mesenchymal stromal cells from human subcutaneous adipose tissue. Stem Cells and Development, 2009(18), 533–543.

    Article  Google Scholar 

  6. Bai, X., Yan, Y., Song, Y. H., Seidensticker, M., Rabinovich, B., Metzele, R., et al. (2010). Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. European Heart Journal, 2010(31), 489–501.

    Article  Google Scholar 

  7. Zhang, D. Z., Gai, L. Y., Liu, H. W., Jin, Q. H., Huang, J. H., & Zhu, X. Y. (2007). Transplantation of autologous adipose-derived stem cells ameliorates cardiac function in rabbits with myocardial infarction. Chinese Medical Journal (English Edition), 2007(120), 300–307.

    Google Scholar 

  8. Rigotti, G., Marchi, A., Galie, M., Baroni, G., Benati, D., Krampera, M., et al. (2007). Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: A healing process mediated by adipose-derived adult stem cells. Plastic and Reconstructive Surgery, 2007(119), 1409–1422. discussion 1423-4.

    Article  Google Scholar 

  9. Li, J., Fu, X., Sheng, Z., & Sun, T. (2006). Ectopia of epidermal stem cells on wound edge during wound healing process. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi., 2006(20), 264–267.

    Google Scholar 

  10. Ebrahimian, T. G., Pouzoulet, F., Squiban, C., Buard, V., Andre, M., Cousin, B., et al. (2009). Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009(29), 503–510.

    Article  Google Scholar 

  11. Rangappa, S., Fen, C., Lee, E. H., Bongso, A., & Sim, E. K. (2003). Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Annals of Thoracic Surgery, 2003(75), 775–779.

    Article  Google Scholar 

  12. Chung, T. L., Holton, L. H., 3rd, & Silverman, R. P. (2006). The effect of fondaparinux versus enoxaparin in the survival of a congested skin flap in a rabbit model. Annals of Plastic Surgery, 2006(56), 312–315.

    Article  Google Scholar 

  13. Dawn, B., & Bolli, R. (2005). Adult bone marrow-derived cells: Regenerative potential, plasticity, and tissue commitment. Basic Research in Cardiology, 2005(100), 494–503.

    Article  Google Scholar 

  14. Parker, A. M., & Katz, A. J. (2006). Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opinion on Biological Therapy, 2006(6), 567–578.

    Article  Google Scholar 

  15. Bura, A., Planat-Benard, V., Bourin, P., Silvestre, J. S., Gross, F., Grolleau, J. L., et al. (2014). Phase I trial: The use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy, 2014(16), 245–257.

    Article  Google Scholar 

  16. di Summa, P. G., Kingham, P. J., Raffoul, W., Wiberg, M., Terenghi, G., & Kalbermatten, D. F. (2010). Adipose-derived stem cells enhance peripheral nerve regeneration. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2010(63), 1544–1552.

    Article  Google Scholar 

  17. Nie, C., Yang, D., Xu, J., Si, Z., Jin, X., & Zhang, J. (2011). Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplantation, 2011(20), 205–216.

    Article  Google Scholar 

  18. Tomita, K., Madura, T., Sakai, Y., Yano, K., Terenghi, G., & Hosokawa, K. (2013). Glial differentiation of human adipose-derived stem cells: implications for cell-based transplantation therapy. Neuroscience, 2013(236), 55–65.

    Article  Google Scholar 

  19. Schipper, B. M., Marra, K. G., Zhang, W., Donnenberg, A. D., & Rubin, J. P. (2008). Regional anatomic and age effects on cell function of human adipose-derived stem cells. Annals of Plastic Surgery, 2008(60), 538–544.

    Article  Google Scholar 

  20. Prunet-Marcassus, B., Cousin, B., Caton, D., Andre, M., Penicaud, L., & Casteilla, L. (2006). From heterogeneity to plasticity in adipose tissues: site-specific differences. Experimental Cell Research, 2006(312), 727–736.

    Article  Google Scholar 

  21. Gimble, J., & Guilak, F. (2003). Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy, 2003(5), 362–369.

    Article  Google Scholar 

  22. Bailey, A. M., Kapur, S., & Katz, A. J. (2010). Characterization of adipose-derived stem cells: An update. Current Stem Cell Research & Therapy, 2010(5), 95–102.

    Article  Google Scholar 

  23. Mitchell, J. B., McIntosh, K., Zvonic, S., Garrett, S., Floyd, Z. E., Kloster, A., et al. (2006). Immunophenotype of human adipose-derived cells: Temporal changes in stromal-associated and stem cell-associated markers. Stem Cells, 2006(24), 376–385.

    Article  Google Scholar 

  24. Oedayrajsingh-Varma, M. J., van Ham, S. M., Knippenberg, M., Helder, M. N., Klein-Nulend, J., Schouten, T. E., et al. (2006). Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy, 2006(8), 166–177.

    Article  Google Scholar 

  25. Lu, F., Mizuno, H., Uysal, C. A., Cai, X., Ogawa, R., & Hyakusoku, H. (2008). Improved viability of random pattern skin flaps through the use of adipose-derived stem cells. Plastic and Reconstructive Surgery, 2008(121), 50–58.

    Article  Google Scholar 

  26. Yingxin, G., Guoqian, Y., Jiaquan, L., & Han, X. (2013). Effects of natural and recombinant hirudin on VEGF expression and random skin flap survival in a venous congested rat model. International Surgery, 2013(98), 82–87.

    Article  Google Scholar 

  27. Planat-Benard, V., Silvestre, J. S., Cousin, B., Andre, M., Nibbelink, M., Tamarat, R., et al. (2004). Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives. Circulation, 2004(109), 656–663.

    Article  Google Scholar 

  28. Salgado, A. J., Reis, R. L., Sousa, N. J., & Gimble, J. M. (2010). Adipose tissue derived stem cells secretome: Soluble factors and their roles in regenerative medicine. Current Stem Cell Research & Therapy, 2010(5), 103–110.

    Article  Google Scholar 

  29. Kilroy, G. E., Foster, S. J., Wu, X., Ruiz, J., Sherwood, S., Heifetz, A., et al. (2007). Cytokine profile of human adipose-derived stem cells: Expression of angiogenic, hematopoietic, and pro-inflammatory factors. Journal of Cellular Physiology, 2007(212), 702–709.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Nature Science Foundation of China (No.: 51272286).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, N., Guo, S., Wang, Y. et al. Transplantation of Adipose Tissue-Derived Stromal Cells Promotes the Survival of Venous-Congested Skin Flaps in Rabbit Ear. Cell Biochem Biophys 71, 557–563 (2015). https://doi.org/10.1007/s12013-014-0234-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0234-8

Keywords

Navigation