Skip to main content

Advertisement

Log in

Effect of 3G Cell Phone Exposure with Computer Controlled 2-D Stepper Motor on Non-thermal Activation of the hsp27/p38MAPK Stress Pathway in Rat Brain

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Cell phone radiation exposure and its biological interaction is the present concern of debate. Present study aimed to investigate the effect of 3G cell phone exposure with computer controlled 2-D stepper motor on 45-day-old male Wistar rat brain. Animals were exposed for 2 h a day for 60 days by using mobile phone with angular movement up to zero to 30°. The variation of the motor is restricted to 90° with respect to the horizontal plane, moving at a pre-determined rate of 2° per minute. Immediately after 60 days of exposure, animals were scarified and numbers of parameters (DNA double-strand break, micronuclei, caspase 3, apoptosis, DNA fragmentation, expression of stress-responsive genes) were performed. Result shows that microwave radiation emitted from 3G mobile phone significantly induced DNA strand breaks in brain. Meanwhile a significant increase in micronuclei, caspase 3 and apoptosis were also observed in exposed group (P < 0.05). Western blotting result shows that 3G mobile phone exposure causes a transient increase in phosphorylation of hsp27, hsp70, and p38 mitogen-activated protein kinase (p38MAPK), which leads to mitochondrial dysfunction-mediated cytochrome c release and subsequent activation of caspases, involved in the process of radiation-induced apoptotic cell death. Study shows that the oxidative stress is the main factor which activates a variety of cellular signal transduction pathways, among them the hsp27/p38MAPK is the pathway of principle stress response. Results conclude that 3G mobile phone radiations affect the brain function and cause several neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tillmann, T., Ernst, H., Streckert, J., Zhou, Y., Taugner, F., Hansen, V., et al. (2010). Indication of cocarcinogenic potential of chronic UMTS-modulated radiofrequency exposure in an ethylnitrosourea mouse model. International Journal of Radiation Biology, 86(7), 529–541.

    Article  CAS  PubMed  Google Scholar 

  2. Manti, L., Braselmann, H., Calabrese, M. L., Massa, R., Pugliese, M., Scampoli, P., et al. (2008). Effects of modulated microwave radiation at cellular telephone frequency (1.95 GHz) on X-ray-induced chromosome aberrations in human lymphocytes in vitro. Radiation Research, 169(5), 575–583.

    Article  CAS  PubMed  Google Scholar 

  3. Nora, D. V., Tomasi, D., Wang, G. J., Vaska, P., Fowler, J. S., Telang, F., et al. (2011). Effects of cell phone radiofrequency signal exposure on brain glucose metabolism. Journal of the American Medical Association, 305(8), 808–814.

    Article  Google Scholar 

  4. Behari, J., & Nirala, J. P. (2012). SAR measurement due to mobile phone exposure in a simulated biological media. Electromagnetic Biology and Medicine, 31(3), 195–203.

    Article  CAS  PubMed  Google Scholar 

  5. Khurana, V. G., Teo, C., Kundi, M., Hardell, L., & Carlberg, M. (2009). Cell phones and brain tumors: A review including the long-term epidemiologic data. Surgical Neurology, 72, 205–215.

    Article  PubMed  Google Scholar 

  6. Kesari, K. K., Kumar, S., Nirala, J., Siddhiqui, M. H., & Behari, J. (2013). Biophysical evaluation of radiofrequency electromagnetic field effects on male reproductive pattern. Cell Biochemistry and Biophysics, 65(2), 85–96.

    Article  CAS  PubMed  Google Scholar 

  7. Mausset, A. L., de Seze, R., Montpeyroux, F., & Privat, A. (2001). Effects of radiofrequency exposure on the GABAergic system in the rat cerebellum: Clues fromsemi-quantitative immunohistochemistry. Brain Research, 912, 33–46.

    Article  CAS  PubMed  Google Scholar 

  8. Mausset-Bonnefont, A. L., Hirbec, H., Bonnefont, X., Privat, A., Vignon, J., & de Seze, R. (2004). Acute exposure to GSM 900-MHz electromagnetic fields induces glial reactivity and biochemical modifications in the rat brain. Neurobiology, 17, 445–454.

    CAS  Google Scholar 

  9. Odaci, E., Bas, O., & Kaplan, S. (2008). Effects of prenatal exposure to a 900 megahertz electromagnetic field on the dentate gyrus of rats: A stereological and histopathological study. Brain Research, 1238, 224–229.

    Article  CAS  PubMed  Google Scholar 

  10. Dimbylow, P. J., & Mann, S. M. (1994). SAR calculations in an anatomically realistic model of the head for mobile communication transceivers at 900 MHz and 1.8 GHz. Physical Medical Biology, 39, 1537–1544.

    Article  CAS  Google Scholar 

  11. Rothman, K. J., Chou, C. K., Morgan, R., Balzano, Q., Guy, A. W., & Funch, D. P. (1996). Assessment of cellular telephone and other radio frequency exposure for epidemiologic research. Epidemiology, 7, 291–298.

    Article  CAS  PubMed  Google Scholar 

  12. Trunk, A., Stefanics, G., Zentai, N., Kovács-Bálint, Z., Thuróczy, G., & Hernádi, I. (2013). No effects of a single 3G UMTS mobile phone exposure on spontaneous EEG activity, ERP correlates, and automatic deviance detection. Bioelectromagnetics, 34(1), 31–42.

    Article  PubMed  Google Scholar 

  13. Danker-Hopfe, H., Dorn, H., Bahr, A., Anderer, P., & Sauter, C. (2011). Effects of electromagnetic fields emitted by mobile phones (GSM 900 and WCDMA/UMTS) on the macrostructure of sleep. Journal of Sleep Research, 20(1), 73–81.

    Article  PubMed  Google Scholar 

  14. Kesari, K. K., Kumar, S., & Behari, J. (2011). 900-MHz microwave radiation promotes oxidation in rat brain. Electromagnetic Biology and Medicine, 30(4), 219–234.

    Article  CAS  PubMed  Google Scholar 

  15. Kesari, K. K., Kumar, S., & Behari, J. (2012). Pathophysiology of microwave radiation: Effect on rat brain. Applied Biochemistry and Biotechnology, 166(2), 379–388.

    Article  CAS  PubMed  Google Scholar 

  16. Barth, A., Winker, R., Ponocny-Seliger, E., Mayrhofer, W., Ponocny, I., Sauter, C., et al. (2008). A meta-analysis for neurobehavioural effects due to electromagnetic field exposure emitted by GSM mobile phones. Occupational Environment and Medicine, 65(5), 342–346.

    Article  CAS  Google Scholar 

  17. Kesari, K. K., Siddiqui, M. H., Meena, R., Verma, H. N., & Kumar, S. (2013). Cell phone radiation exposure on brain and associated biological systems. Indian Journal of Experimental Biology, 51(3), 187–200.

    CAS  PubMed  Google Scholar 

  18. Kesari, K. K., Behari, J., & Kumar, S. (2010). Mutagenic response of 2.45 GHz radiation exposure on rat brain. International Journal of Radiation Biology, 86(4), 334–343.

    Article  CAS  PubMed  Google Scholar 

  19. Paulraj, R., & Behari, J. (2011). Effects of low level microwave radiation on carcinogenesis in Swiss Albino mice. Molecular and Cellular Biochemistry, 348, 191–197.

    Article  CAS  PubMed  Google Scholar 

  20. Paulraj, R., & Behari, J. (2012). Biochemical changes in rat brain exposed to low intensity 9.9 GHz microwave radiation. Cell Biochemistry and Biophysics, 63, 97–102. doi:10.1007/s12013-012-9344-3.

    Article  CAS  PubMed  Google Scholar 

  21. Nylund, R., & Leszczynski, D. (2004). Proteomics analysis of human endothelial cell line EA.hy926 after exposure to GSM 900 radiation. Proteomics, 4, 1359–1365.

    Article  CAS  PubMed  Google Scholar 

  22. Chauhan, V., Mariampillai, A., Bellier, P. V., Qutob, S. S., Gajda, G. B., Lemay, E., et al. (2006). Gene expression analysis of a human lymphoblastoma cell line exposed in vitro to an intermittent 1.9 GHz pulse-modulated radiofrequency field. Radiation Research, 165, 424–429.

    Article  CAS  PubMed  Google Scholar 

  23. Stagg, R. B., Hawel, L. H., Pastorian, K., Cain, C., Adey, W. R., & Byus, C. V. (2001). Effect of immobilization and concurrent exposure to a pulse-modulated microwave field on core body temperature, plasma ACTH and corticosteroid, and brain ornithine decarboxylase, Fos and Jun mRNA. Radiation Research, 155, 584–592.

    Article  CAS  PubMed  Google Scholar 

  24. Leszczynski, D., Joenvaara, S., Reivinen, J., & Kuokka, R. (2002). Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation, 70, 120–129.

    Article  CAS  PubMed  Google Scholar 

  25. Lin, H., Opler, M., Head, M., Blank, M., & Goodman, R. (1997). Electromagnetic field exposure induces rapid, transitory heat shock factor activation in human cells. Journal of Cell Biochemistry, 66, 482–488.

    Article  CAS  Google Scholar 

  26. Caraglia, M., Marra, M., Mancinelli, F., d’Ambrosio, G., Massa, R., Giordano, A., et al. (2005). Electromagnetic fields at mobile phone frequency induce apoptosis and inactivation of the multi-chaperone complex in human epidermoid cancer cells. Journal of` Cell Physiology, 204(2), 539–548.

    Article  CAS  Google Scholar 

  27. French, P. W., Penny, R., Laurence, J. A., & McKenzie, D. R. (2001). Mobile phones, heat shock proteins and cancer. Differentiation, 67, 93–97.

    Article  CAS  PubMed  Google Scholar 

  28. Capri, M., Scarcella, E., Fumelli, C., Bianchi, E., Salvioli, S., Mesirca, P., et al. (2004). In vitro exposure of human lymphocytes to 900 MHz CW and GSM modulated radiofrequency: Studies of proliferation, apoptosis and mitochondrial membrane potential. Radiation Research, 162, 211–218.

    Article  CAS  PubMed  Google Scholar 

  29. Hook, G. J., Zhang, P., Lagroye, I., Li, L., Higashikubo, R., Moros, E. G., et al. (2004). Measurement of DNA damage and apoptosis in Molt-4 cells after in vitro exposure to radiofrequency radiation. Radiation Research, 16, 193–200.

    Article  Google Scholar 

  30. Yoon, S., & Seger, R. (2006). The extracellular signal-regulated kinase: Multiple substrates regulate diverse cellular functions. Growth Factors, 24, 21–44.

    Article  CAS  PubMed  Google Scholar 

  31. Rubinfeld, H., & Seger, R. (2005). The ERK cascade: A prototype of MAPK signaling. Molecular Biotechnology, 31(2), 151–174.

    Article  CAS  PubMed  Google Scholar 

  32. Jin, M., Blank, M., & Goodman, R. (2000). ERK1/2 phosphorylation, induced by electromagnetic fields, diminishes during neoplastic transformation. Journal of Cellular Biochemistry, 78, 371–379.

    Article  CAS  PubMed  Google Scholar 

  33. Hayashi, I., Morishita, Y., Imai, K., Nakamura, M., Nakachi, K., & Hayashi, T. (2007). High-throughput spectrophotometric assay of reactive oxygen species in serum. Mutation Research, 631, 55–61.

    Article  CAS  PubMed  Google Scholar 

  34. Kesari, K. K., Kumar, S., & Behari, J. (2011). Effects of radiofrequency electromagnetic waves exposure from cellular phone on reproductive pattern in male Wistar rats. Applied Biochemistry and Biotechnology, 164, 546–559.

    Article  CAS  PubMed  Google Scholar 

  35. Criswell, K. A., Krishna, G., Zielinski, D., Urda, G. A., Theiss, J. C., Juneau, P., et al. (1998). Use of acridine orange in: Flow cytometric assessment of micronuclei induction. Mutation Research, 414, 63–75.

    Article  CAS  PubMed  Google Scholar 

  36. Tian, Q., Streuli, M., Saito, H., Schlossman, S. F., & Paul, A. (1991). A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell, 67, 629–639.

    Article  CAS  PubMed  Google Scholar 

  37. Sambrook, J., Fritschi, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  38. Meena, R., Kesari, K. K., & Paulraj, R. (2012). Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7). Journal of Nanoparticle Research, 14(3), 712.

    Article  Google Scholar 

  39. Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J., & Greenberg, M. E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 270, 1326–1331.

    Article  CAS  PubMed  Google Scholar 

  40. Johnson, G. L., & Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298, 1911–1912.

    Article  CAS  PubMed  Google Scholar 

  41. Pan, J., Xu, G., & Yeung, S. C. (2001). Cytochrome c release is upstream to activation of caspase-9, caspase-8, and caspase-3 in the enhanced apoptosis of anaplastic thyroid cancer cells induced by manumycin and paclitaxel. Journal of Clinical Endocrinology Metabolism, 86, 4731–4740.

    Article  CAS  PubMed  Google Scholar 

  42. Bossy-Wetzel, E., & Green, D. R. (1999). Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. Journal of Biological Chemistry, 274, 17484–17490.

    Article  CAS  PubMed  Google Scholar 

  43. D’Autréaux, B., & Toledano, M. B. (2007). ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nature Reviews Molecular Cell Biology, 8, 813–824.

    Article  PubMed  Google Scholar 

  44. Meena, R., Kumari, K., Kumar, J., Rajamani, P., Verma, H. N., & Kesari, K. K. (2013). Therapeutic approaches of melatonin in microwave radiations-induced oxidative stress-mediated toxicity on male fertility pattern of Wistar rats. Electromagnetic Biology and Medicine,. doi:10.3109/15368378.2013.781035.

    PubMed  Google Scholar 

  45. Lai, H., & Singh, N. P. (1997). Melatonin and N-tert-butyl-α-phenylnitrone blocked 60-Hz magnetic field-induced DNA single and double strand breaks in rat brain cells. Journal Pineal Research, 22, 152–162.

    Article  CAS  Google Scholar 

  46. Lai, H., & Singh, N. P. (1997). Melatonin and a spin-trap compound blocked radiofrequency radiation induced DNA strand breaks in rat brain cells. Bioelectromagnetics, 18, 446–454.

    Article  CAS  PubMed  Google Scholar 

  47. Lai, H., & Singh, N. P. (2004). Magnetic field-induced DNA strand breaks in brain cells of rat. Environmental Health Perspectives, 112(6), 87–694.

    Article  Google Scholar 

  48. Paulraj, R., & Behari, J. (2006). Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutation Research, 596, 76–80.

    Article  CAS  PubMed  Google Scholar 

  49. Fumarola, C., & Guidotti, G. G. (2004). Stress-induced apoptosis: Toward a symmetry with receptor-mediated cell death. Apoptosis, 9, 77–82.

    Article  CAS  PubMed  Google Scholar 

  50. Yuan, Z. Q., Feldman, R. I., Sussman, G. E., Coppola, D., Nicosia, S. V., & Cheng, J. Q. (2003). AKT2 inhibition of Cisplatin-induced JNK/p38 and Bax activation by phosphorylation of ASK1: IMPLICATION OF AKT2 in chemoresistance. Journal of Biological Chemistry, 278, 23432–23440.

    Article  CAS  PubMed  Google Scholar 

  51. Davis, R. J. (2000). Signal transduction by the JNK group of MAP kinases. Cell, 103(2), 239–252.

    Article  CAS  PubMed  Google Scholar 

  52. Wada, T., & Penninger, J. M. (2004). Mitogen-activated protein kinases in apoptosis regulation. Oncogene, 23(16), 2838–2849.

    Article  CAS  PubMed  Google Scholar 

  53. Westwick, J. K., Bielawska, A. E., Dbaibo, G., Hannun, Y. A., & Brenner, D. A. (1995). Ceramide activates the stress-activated protein kinases. Journal Biological Chemistry, 270, 22689–22692.

    Article  CAS  Google Scholar 

  54. Chen, Y. R., Meyer, C. F., & Tan, T. H. (1996). Persistent activation of c-Jun N-terminal kinase 1 (JNK1) in gamma radiation-induced apoptosis. Journal of Biological Chemistry, 271, 631–634.

    Article  CAS  PubMed  Google Scholar 

  55. Cuvillier, O., Pirianov, G., Kleuser, B., Vanek, P. G., Coso, O. A., Gutkind, S., et al. (1996). Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature, 381, 800–803.

    Article  CAS  PubMed  Google Scholar 

  56. Zanke, B. W., Boudreau, K., Rubie, E., Winnett, E., Tibbles, L. A., Zon, L., et al. (1996). The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat. Current Biology, 6, 606–613.

    Article  CAS  PubMed  Google Scholar 

  57. Kurada, P., & White, K. (1998). Ras promotes cell survival in Drosophila by downregulating hid expression. Cell, 95, 319–329.

    Article  CAS  PubMed  Google Scholar 

  58. Choi, S. Y., Kim, M., Kang, C., Bae, G., Cho, C., Soh, J., et al. (2006). Activation of Bak and Bax through c-Abl-Protein Kinase C-p38 MAPK signaling in response to ionizing radiation in human non-small cell lung cancer cells. Journal of Biological Chemistry, 281(11), 7049–7059.

    Article  CAS  PubMed  Google Scholar 

  59. Cheng, A., Chan, S. L., Milhavet, O., Wang, S., & Mattson, M. P. (2001). p38 MAP kinase mediates nitric oxide induced apoptosis of neural progenitor cells. Journal of Biological Chemistry, 276, 43320–43327.

    Article  CAS  PubMed  Google Scholar 

  60. Choi, J. A., Park, M. T., Kang, C. M., Um, H. D., Bae, S., Lee, K. H., et al. (2004). Opposite effects of Ha-Ras and Ki-Ras on radiation-induced apoptosis via differential activation of PI3K/Akt and Rac/p38 mitogen-activated protein kinase signaling pathways. Oncogene, 23, 9–20.

    Article  CAS  PubMed  Google Scholar 

  61. Galan, A., Garcia-Bermejo, M. L., Troyano, A., Vilaboa, N. E., de Blas, E., Kazanietz, M. G., et al. (2000). Stimulation of p38 mitogen-activated protein kinase is an early regulatory event for the cadmium-induced apoptosis in human promonocytic cells. Journal of Biological Chemistry, 275, 11418–11424.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Council for Scientific and Industrial Research [CSIR Project Ref. No. 37(1536)/12/EMR-II], New Delhi, for the financial assistance. Authors are also thankful to the reviewers of this paper for their important suggestions and corrections throughout the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavindra Kumar Kesari.

Additional information

Kavindra Kumar Kesari and Ramovatar Meena have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kesari, K.K., Meena, R., Nirala, J. et al. Effect of 3G Cell Phone Exposure with Computer Controlled 2-D Stepper Motor on Non-thermal Activation of the hsp27/p38MAPK Stress Pathway in Rat Brain. Cell Biochem Biophys 68, 347–358 (2014). https://doi.org/10.1007/s12013-013-9715-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9715-4

Keywords

Navigation