Skip to main content

Advertisement

Log in

Differentiation of Reprogrammed Mouse Cardiac Fibroblasts into Functional Cardiomyocytes

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Fibroblasts can be reprogrammed by ectopic expression of reprogramming factors to yield induced pluripotent stem (iPS) cells that are capable of transdifferentiating into diverse types of somatic cell lines. In this study, we examined if functional cardiomyocytes (CMs) can be produced from mouse cardiac fibroblasts (CFs), using iPS cell factor-based reprogramming. CFs were isolated from Oct4-GFP-C57 mice and infected with a retrovirus expressing the Yamanaka reprogramming factors, Oct4, Sox2, Klf4, and c-Myc to reprogram the CFs into a CF-iPS cell line. Primary mouse embryonic fibroblast cells (MEFs) were used as a control. We found that the dedifferentiated CF-iPS cells showed similar biological characteristics (morphology, pluripotent factor expression, and methylation level) as embryonic stem cells (ESs) and MEF-iPS cells. We used the classical embryoid bodies (EBs)-based method and a transwell CM co-culture system to simulate the myocardial paracrine microenvironment for performing CF-iPS cell cardiogenic differentiation. Under this simulated myocardial microenvironment, CF-iPS cells formed spontaneously beating EBs. The transdifferentiated self-beating cells expressed cardiac-specific transcription and structural factors and also displayed typical myocardial morphology and electrophysiological characteristics. CFs can be dedifferentiated into iPS cells and further transdifferentiated into CMs. CFs hold great promise for CM regeneration as an autologous cell source for functional CM in situ without the need for exogenous cell transplantation in ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Segers, V. F., & Lee, R. T. (2008). Stem-cell therapy for cardiac disease. Nature, 451, 937–942.

    Article  PubMed  CAS  Google Scholar 

  2. Reinecke, H., Minami, E., Zhu, W. Z., & Laflamme, M. A. (2008). Cardiogenic differentiation and transdifferentiation of progenitor cells. Circulation Research, 103, 1058–1071.

    Article  PubMed  CAS  Google Scholar 

  3. Dong, H. Y., Xu, Z. W., Zhang, Z. M., et al. (2009). Mobilization of bone marrow-derived Nk2-5+ cardiac progenitor cells under acute myocardial ischemia. Acta Physiologica Sinica, 61, 189–193.

    Google Scholar 

  4. Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A., et al. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. FASEB Journal, 21, 1345–1357.

    Article  PubMed  CAS  Google Scholar 

  5. Kuzmenkin, A., Liang, H., Xu, G., et al. (2009). Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells in vitro. FASEB Journal, 23, 4168–4180.

    Article  PubMed  CAS  Google Scholar 

  6. Zhang, J., Wilson, G. F., Soerens, A. G., Koonce, C. H., Yu, J., Palecek, S. P., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104, e30–e41.

    Article  PubMed  CAS  Google Scholar 

  7. Nelson, T. J., Martinez-Fernandez, A., Yamada, S., et al. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 120, 408–416.

    Article  PubMed  Google Scholar 

  8. Camelliti, P., Borg, T. K., & Kohl, Peter. (2005). Structural and functional characterisation of cardiac fibroblasts. Cardiovascular Research, 65, 40–51.

    Article  PubMed  CAS  Google Scholar 

  9. Anversa, P., & Nadal-Ginard, B. (2002). Myocyte renewal and ventricular remodeling. Nature, 415, 240–243.

    Article  PubMed  CAS  Google Scholar 

  10. Etzion, S., Barbash, I. M., Feinberg, M. S., et al. (2002). Cellular cardiomyoplasty of cardiac fibroblasts by adenoviral delivery of MyoD ex vivo: An unlimited source of cells for myocardial repair. Circulation, 106, 125–130.

    Article  Google Scholar 

  11. Ieda, M., Fu, J. D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G., et al. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142, 375–386.

    Article  PubMed  CAS  Google Scholar 

  12. Hochedlinger, K., & Jaenisch, R. (2006). Nuclear reprogramming and pluripotency. Nature, 441, 1061–1067.

    Article  PubMed  CAS  Google Scholar 

  13. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  PubMed  CAS  Google Scholar 

  14. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313–317.

    Article  PubMed  CAS  Google Scholar 

  15. Ieda, M., Tsuchihashi, T., Ive, K. N., et al. (2009). Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Developmental Cell, 16, 233–244.

    Article  PubMed  CAS  Google Scholar 

  16. Jiang, B., Dong, H., Zhang, Z., et al. (2007). Hypoxic response elements control expression of human vascular endothelial growth factor165 genes transferred to ischemia myocardium in vivo and in vitro. Journal of Gene Medicine, 9, 788–796.

    Article  PubMed  CAS  Google Scholar 

  17. Pucéat, M. (2008). Protocols for cardiac differentiation of embryonic stem cells. Methods, 45, 168–171.

    Article  PubMed  Google Scholar 

  18. Aasen, T., Raya, A., Barrero, M. J., Garreta, E., Consiglio, A., Gonzalez, F., et al. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 26, 1276–1284.

    Article  PubMed  CAS  Google Scholar 

  19. Nakagawa, M., Koyanagi, M., Tanabe, K., et al. (2007). Generation of high quality iPS cells. Neuroscience Research, 58(Suppl 1), S19.

    Google Scholar 

  20. Carey, B. W., Markoulaki, S., Hanna, J., et al. (2009). Reprogramming of murine and human somatic cells using a single polycistronic vector. Proceedings of the National Academy of Sciences, 106(1), 157–162.

    Article  CAS  Google Scholar 

  21. Hanna, J., Wernig, M., Markoulaki, S., et al. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318, 1920–1923.

    Article  PubMed  CAS  Google Scholar 

  22. Park, I. H., Arora, N., Huo, H., et al. (2008). Disease-specific induced pluripotent stem cells. Cell, 134, 877–886.

    Article  PubMed  CAS  Google Scholar 

  23. Chen, H. S., Kim, C., & Mercola, M. (2009). Electrophysiological challenges of cell-based myocardial repair. Circulation, 120, 2496–2508.

    Article  PubMed  Google Scholar 

  24. Mummery, C., Ward-van Oostwaard, D., Doevendans, P., et al. (2003). Differentiation of human embryonic stem cells to cardiomyocytes: Role of coculture with visceral endoderm-like cells. Circulation, 107, 2733–2740.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang, Y. M., Hartzell, C., Narlow, M., & Dudley, S. C., Jr. (2002). Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. Circulation, 106, 1294–1299.

    Article  PubMed  Google Scholar 

  26. Sun, Y., Kiani, M. F., Postlethwaite, A. E., & Weber, K. T. (2002). Infarct scar as living tissue. Basic Research in Cardiology, 97, 343–347.

    Article  PubMed  Google Scholar 

  27. Zannad, F., Dousset, B., & Alla, F. (2001). Treatment of congestive heart failure: interfering the aldosterone-cardiac extracellular matrix relationship. Hypertension, 38, 1227–1232.

    Article  PubMed  CAS  Google Scholar 

  28. Cho, H. J., Lee, C. S., Kwon, Y. W., et al. (2010). Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. Blood, 116, 386–395.

    Article  PubMed  CAS  Google Scholar 

  29. Maherali, N., Sridharan, R., Xie, W., et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1, 55–70.

    Article  PubMed  CAS  Google Scholar 

  30. Maherali, N., Sridharan, R., Xie, W., et al. (2002). Stem cell differentiation requires a paracrine pathway in the heart. FASEB Journal, 16, 1558–1566.

    Article  Google Scholar 

  31. Kofidis, T., de Bruin, J. L., Yamane, T., et al. (2005). Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injury. Circulation, 111, 2486–2493.

    Article  PubMed  CAS  Google Scholar 

  32. Sun, Y. (2009). Myocardial repair/remodelling following infarction: Roles of local factors. Cardiovascular Research, 81, 482–490.

    Article  PubMed  CAS  Google Scholar 

  33. Snider, P., Standley, K. N., Wang, J., et al. (2009). Origin of cardiac fibroblasts and the role of periostin. Circulation Research, 105, 934–947.

    Article  PubMed  CAS  Google Scholar 

  34. Yoshida, Y., Takahashi, K., Okita, K., et al. (2009). Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell, 5, 237–241.

    Article  PubMed  CAS  Google Scholar 

  35. Polo, J. M., Liu, S., Figueroa, M. E., Kulalert, W., Eminli, S., Tan, K. Y., et al. (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 28, 848–855.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31071307) to Zhongming Zhang, Ministry of Science and Technology (2009CB941100) and Chinese Academy of Sciences (XDA01010401) to Gang Wang. We thank Dr. Jingwen Yin, Xiaona Chen, Zhen Liu and Yu Fu for their excellent technical assistance and all the members in Prof. Gang Wang’s lab for their helpful discussion in this study. We are grateful to Prof. Anning Lin for his kind help.

Conflict of interest

The authors confirm that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Wang or Zhongming Zhang.

Additional information

Bo Jiang and Hongyan Dong contributed equally to this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, B., Dong, H., Li, Q. et al. Differentiation of Reprogrammed Mouse Cardiac Fibroblasts into Functional Cardiomyocytes. Cell Biochem Biophys 66, 309–318 (2013). https://doi.org/10.1007/s12013-012-9487-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9487-2

Keywords

Navigation