Skip to main content
Log in

The Effect of Pulsed Magnetic Field on the Molecular Uptake and Medium Conductivity of Leukemia Cell

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The cell membrane acts as a barrier that hinders free entrance of most hydrophilic molecules into the cell. Owing to the numerous applications, the introduction of non-permeate molecules into biologic cells has drawn considerable attention in the past years. The aim of our study was to investigate the effect of time-varying magnetic field on transmembrane molecular transport by measuring bleomycin cytotoxicity and conductivity modifying in K562 cells. The cells were exposed to magnetic pulses of 2.2 T strength peak and about 250-μs duration via Magstim stimulator and double 70-mm coil. Three different frequencies of 0.25, 1, and 10 Hz pulses for 56,112, and 28 numbers of pulses, respectively, were applied (nine experimental groups) and uptake and conductivity was measured in each group. Our results show that time-varying magnetic field increase transmembrane molecular transport and media conductivity; this enhancement is greater for 28 pulses with 1 Hz frequency. The observed uptake enhancement due to magnetic exposure is considerable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Flipo, D., Fournier, M., Benquet, C., Roux, P., Boulaire, C. L., Pinsky, C., et al. (1998). Increased apoptosis, changes in intracellular Ca2 + , and functional alterations in lymphocytes and macrophages after in vitro exposure to static magnetic field. Journal of Toxicology and Environment Health, 54, 63–76.

    Article  CAS  Google Scholar 

  2. Chionna, A., Dwikat, M., Panzarini, E., Tenuzzo, B., Carla, E. C., Verri, T., et al. (2003). Cell shape and plasma membrane alterations after static magnetic fields exposure. European Journal of Histochemistry, 47, 299–308.

    PubMed  CAS  Google Scholar 

  3. Rieti, S., Manni, V., Lisi, A., Giuliani, L., Sacco, D., D’Emilia, E., et al. (2004). SNOM and AFM microscopy techniques to study the effect of non-ionizing radiation on the morphological and biochemical properties of human keratinocytes cell line (HaCaT). Journal of Microscopy, 213, 20–28.

    Article  PubMed  CAS  Google Scholar 

  4. Valic, B., Golzio, M., Pavlin, M., Schatz, A., Faurie, C., Gabriel, B., et al. (2003). Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. European Biophysics Journal, 32, 519–528.

    Article  PubMed  Google Scholar 

  5. Salvatore, R., Blackinton, D., Polk, C., & Mehta, S. (1994). Non-ionizing electromagnetic radiation: A study of carcinogenic and cancer treatment potential. Reviews on Environmental Health, 10(3), 197–207.

    Article  PubMed  CAS  Google Scholar 

  6. Chakkalakal, A., Mollner, T. J., Bogard, M. R., Fritz, E. D., Novak, J. R., McGuire, M. H., (1997). Magnetic field induced inhibition of human osteosarcoma cells treated with Adriamycin. Presented at the Fourth International Symposium on BCEC. pp. 230–237.

  7. Omote, Y., Hosokawa, M., Komatsumoto, M., Namieno, T., Nakajima, S., Kubo, Y., et al. (1990). Treatment of experimental tumors with a combination of a pulsing magnetic field and an antitumor drug. Japanese Journal of Cancer Research, 81, 956–961.

    Article  PubMed  CAS  Google Scholar 

  8. Hannan, C. J., Liang, Y., Allison, J. D., Pantazis, C. J., & Searle, J. R. (1994). Chemotherapy of human carcinoma xenografts during pulsed magnetic field exposure. Anticancer Research, 14, 1521–1522.

    PubMed  Google Scholar 

  9. Cordes, J., Arends, M., Mobascher, A., Brinkmeyer, J., Kornischka, J., Eichhammer, P., et al. (2006). Potential clinical targets of repetitive transcranial magnetic stimulation treatment in schizophrenia. Neuropsychobiology, 54, 87–99.

    Article  PubMed  CAS  Google Scholar 

  10. Salinas, F. S., Lancaster, J. L., & Fox, P. T. (2007). Detailed 3D models of the induced electric field of transcranial magnetic stimulation coils. Physics in Medicine and Biology, 52, 2879–2892.

    Article  PubMed  CAS  Google Scholar 

  11. Jalinous, R. (1991). Technical and practical aspects of magnetic nerve stimulation. Journal of Clinical Neurophysiology, 8, 10–25.

    Article  PubMed  CAS  Google Scholar 

  12. Roth, Y., Zangen, A., & Hallett, M. (2002). A coil design for transcranial magnetic stimulation of deep brain regions. Journal of Clinical Neurophysiology, 19(4), 361–370.

    Article  PubMed  Google Scholar 

  13. Chen, C., Evans, J. A., Robinson, M. P., Smye, S. W., & Tool, P. O. (2010). Electroporation of cells using EMinduction of ac fields by a magnetic stimulator. Physics in Medicine and Biology, 55, 1219–1229.

    Article  PubMed  CAS  Google Scholar 

  14. Towhidi, L., Firoozabadi, S. M. P., Mozdarani, H., & Miklavcic, (2012). Lucifer Yellow uptake by CHO cells exposed to magnetic and electric pulses. Radiology and Oncology, 46(2), 119–125.

    Article  PubMed  Google Scholar 

  15. Silve, A., & Mir, L. M. (2011). Cell electropermeabilization and cellular uptake of small molecules: The electrochemotherapy concept. In S. Kee, J. Gehl, & E. W. Lee (Eds.), Clinical aspects of electroporation (pp. 69–82). New York: Springer.

    Chapter  Google Scholar 

  16. Silve, A., Leray, I., & Mir, L. M. (2011). Demonstration of cell membrane permeabilization to medium-sized molecules caused by a single 10 ns electric pulse. Bioelectrochemistry, 87, 260–264.

    Article  PubMed  Google Scholar 

  17. Kotnik, T., Macek Lebar, A., Miklavcic, D., & Mir, L. M. (2000). Evaluation of cell membrane electropermeabilization by means of nonpermeant cytotoxic agent. Biotechniques, 28, 921–926.

    PubMed  CAS  Google Scholar 

  18. Pavlin, M., Kandušer, M., Reberšek, M., Pucihar, G., Hart, F. X., Magjarevićcacute, R., et al. (2005). Effect of cell electroporation on the conductivity of a cell suspension. Biophysical Journal, 88(6), 4378–4390.

    Article  PubMed  CAS  Google Scholar 

  19. Pavlin, M., & Miklavcic, D. (2008). Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation Relation between short-lived and long-lived pores. Journal of Bioelectrochemistry, 74, 38–46.

    Article  CAS  Google Scholar 

  20. Hallett, M. (2000). Transcranial magnetic stimulation and the human brain. Nature, 406, 147–150.

    Article  PubMed  CAS  Google Scholar 

  21. Ravazzani, P., Ruohonen, J., Grandori, F., & Tognola, G. (1996). Magnetic stimulation of the nervous system: induced electric field in unbounded, semi-infinite, spherical, and cylindrical media. Annals of Biomedical Engineering, 24, 606–616.

    Article  PubMed  CAS  Google Scholar 

  22. Ikehara, T., Yamaguchi, H., Hosokawa, K., Houchi, H., Park, K. H., Minakuchi, K., et al. (2005). Effects of a time-varying strong magnetic field on transient increase in Ca2 + release induced by cytosolic Ca2 + in cultured pheochromocytoma cells. Biochimica et Biophysica Acta, 1724, 8–16.

    Article  PubMed  CAS  Google Scholar 

  23. Mikirova, N., Jackson, J. A., Casciari, J. J., & Riordan, H. D. (2001). The effect of alternating magnetic field exposure and vitamin c on cancer cells. Journal of Orthomolecular Medicine, 16(3), 177–182.

    Google Scholar 

  24. Santini, M. T., Ferrante, A., Rainaldi, G., Indovina, P., & Indovina, P. L. (2005). Extremely low frequency (ELF) magnetic fields and apoptosis: A review. International Journal of Radiation Biology, 8, 1–11.

    Article  Google Scholar 

  25. Tofani, S., Barone, D., Berardelli, M., Berno, E., et al. (2003). Static and ELF magnetic fields enhance the in vivo anti-tumor efficacy of cis-platin against lewis lung carcinoma, but not of cyclophosphamide against B16 melanotic melanoma. Pharmacological Research, 48, 83–90.

    PubMed  CAS  Google Scholar 

  26. Rols, M. P., Femenia, P., & Teissie, J. (1995). Long-lived macropinocytosis takes place in electropermeabilized mammalian cells. Biochemical and Biophysical Research Communications, 208, 26–38.

    Article  PubMed  CAS  Google Scholar 

  27. Rosemberg, Y., & Korenstein, R. (1997). Incorporation of macromolecules into cells and vesicles by low electric fields: Induction of endocytotic-like process. Bioelectrochemistry and Bioenergetics, 42, 275–281.

    Article  CAS  Google Scholar 

  28. Antov, Y., Barbul, A., & Korenstein, R. (2004). Electroendocytosis: Stimulation of adsorptive and fluid-phase uptake by pulsed low electric fields. Experimental Cell Research, 297, 348–362.

    Article  PubMed  CAS  Google Scholar 

  29. Antov, Y., Barbul, A., Mantsur, H., & Korenstein, R. (2005). Electroendocytosis: Exposure of cells to pulsed low electric fields enhances adsorption and uptake of macromolecules. Biophysical Journal, 88, 2206–2222.

    Article  PubMed  CAS  Google Scholar 

  30. Kaviani Moghadam, M., Firoozabadi, S. M. P., & Janahmadi, M. (2011). Effects of weak environmental magnetic fields on the spontaneous bioelectrical activity of snail neurons. The Journal of Membrane Biology, 240, 63–71.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Student Research Committee of Tarbiat Modares University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. P. Firoozabadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shankayi, Z., Firoozabadi, S.M.P. & Mansurian, M.G. The Effect of Pulsed Magnetic Field on the Molecular Uptake and Medium Conductivity of Leukemia Cell. Cell Biochem Biophys 65, 211–216 (2013). https://doi.org/10.1007/s12013-012-9422-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9422-6

Keywords

Navigation