Skip to main content

Advertisement

Log in

MMPI Drug-Eluting IVC Filter Decreases Adhesion Between Caval Wall and Filter

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The implantation of inferior vena cava (IVC) filter was a safe and effective therapy for preventing fatal pulmonary embolism. However, there are risks associated with long-term implantation of filters. Retrievable filters are designed to be removed, but may also remain permanently. Retrieval can reduce risk of long-term complications. The difficulty or impossibility of retrieval is still an issue of retrieval filter. The major causes of filters retrieval failure were intimal overgrowth and severely tilted filter with apex embedded into the caval wall. Matrix metalloproteinases (MMPs) play a key role in neointimal hyperplasia. It is documented that neointimal hyperplasia can be reduced by inhibiting MMP activity and hence smooth muscle cell migration. MMP inhibitors (MMPI) can potently inhibit the activity of MMPs. We hypothesize that a drug-eluting filter which contains MMPI may inhibit IVC neointimal hyperplasia and decrease the adhesion between vascular wall and filter struts. After implantation of drug-eluting retrieval filter, MMPI is released slowly at the sites where the filter struts are in contact with the caval wall; the activity of MMPs of caval wall will be inhibited, injury in basement membrane is decreased, migration of SMC maybe reduced, and the release of extracellular matrix maybe lessened. Finally, neointimal hyperplasia maybe inhibited, the adhesion between vascular wall and filter maybe weakened, the success rate maybe increased, and the vascular injury during retrieval maybe reduced. The hypothesis might improve the long-term prognosis of venous thromboembolism patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Greenfield, L. J., & Michna, B. A. (1988). Twelve-year clinical experience with the Greenfield vena cava filter. Surgery., 104(4), 706–712.

    PubMed  CAS  Google Scholar 

  2. Pais, S. O., Tobin, K. D., Austin, C. B., & Queral, L. (1988). Percutaneous insertion of Greenfield inferior vena cava filter: Experience with ninety-six patients. Journal of Vascular Surgery, 8(4), 460–464.

    PubMed  CAS  Google Scholar 

  3. Becker, D. M., Philbrick, J. T., & Selby, J. B. (1992). Inferior vena cava filters: Indications, safety, effectiveness. Archives of Internal Medicine, 152(10), 1985–1994.

    Article  PubMed  CAS  Google Scholar 

  4. Kinney, T. B. (2003). Update on inferior vena cava filters. Journal of Vascular and Interventional Radiology, 14(4), 425–440.

    Article  PubMed  Google Scholar 

  5. Berczi, V., Bottomley, J. R., Thomas, S. M., Taneja, S., Gaines, P. A., & Cleveland, T. J. (2007). Long-term retrievability of IVC filters: Should we abandon permanent devices? Cardiovascular and Interventional Radiology, 30(5), 820–827.

    Article  PubMed  CAS  Google Scholar 

  6. PREPIC Study Group. (2005). Eight-year follow-up of patients with permanent vena cava filters in the prevention of pulmonary embolism: The PREPIC (Prevention du Risque d’Embolie Pulmonaire par Interruption Cave) randomized study. Circulation, 112(3), 416–422.

    Article  Google Scholar 

  7. Ray, C. E, Jr, Mitchell, E., Zipser, S., Kao, E. Y., Brown, C. F., & Moneta, G. L. (2006). Outcomes with retrievable inferior vena cava filters: A multicenter study. Journal of Vascular and Interventional Radiology, 17(10), 1595–1604.

    Article  PubMed  Google Scholar 

  8. Durack, J. C., Westphalen, A. C., Kekulawela, S., et al. (2012). Perforation of the IVC: Rule rather than exception after longer indwelling times for the Günther Tulip and Celect retrievable filters. Cardiovascular and Interventional Radiology., 35(2), 299–308.

    Article  PubMed  Google Scholar 

  9. Kuo, W. T., Cupp, J. S., Louie, J. D., et al. (2012). Complex retrieval of embedded IVC filters: Alternative techniques and histologic tissue analysis. Cardiovascular and Interventional Radiology, 35(3), 588–597.

    Article  PubMed  Google Scholar 

  10. Oh, J. C., Trerotola, S. O., Dagli, M., et al. (2011). Removal of retrievable inferior vena cava filters with computed tomography findings indicating tenting or penetration of the inferior vena cava wall. Journal of Vascular and Interventional Radiology, 22(1), 70–74.

    Article  PubMed  Google Scholar 

  11. Rimon, U., Bensaid, P., Golan, G., et al. (2011). Optease vena cava filter optimal indwelling time and retrievability. Cardiovascular and Interventional Radiology, 34(3), 532–535.

    Article  PubMed  Google Scholar 

  12. Doody, O., Given, M. F., Kavnoudias, H., Street, M., Thomson, K. R., & Lyon, S. M. (2009). Initial experience in 115 patients with the retrievable Cook Celect vena cava filter. Journal of Medical Imaging and Radiation Oncology, 53(1), 64–68.

    Article  PubMed  CAS  Google Scholar 

  13. Lynch, F. C. (2009). Balloon-assisted removal of tilted inferior vena cava filters with embedded tips. Journal of Vascular and Interventional Radiology, 20(9), 1210–1214.

    Article  PubMed  Google Scholar 

  14. Thors, A., & Muck, P. (2011). Resorbable inferior vena cava filters: Trial in an in vivo porcine model. Journal of Vascular and Interventional Radiology, 22(3), 330–335.

    Article  PubMed  Google Scholar 

  15. de Gregorio, M. A., Gimeno, M. J., Tobio, R., et al. (2001). Animal experience in the Günther Tulip retrievable inferior vena cava filter. Cardiovascular and Interventional Radiology, 24(6), 413–417.

    Article  PubMed  Google Scholar 

  16. Dollery, C. M., McEwan, J. R., & Henney, A. M. (1995). Matrix metalloproteinases and cardiovascular disease. Circulation Research, 77, 863–868.

    Article  PubMed  CAS  Google Scholar 

  17. Aguilera, C. M., George, S. J., Johnson, J. L., & Newby, A. C. (2003). Relationship between type IV collagen degradation, metalloproteinase activity and smooth muscle cell migration and proliferation in cultured human saphenous vein. Cardiovascular Research, 58(3), 679–688.

    Article  PubMed  CAS  Google Scholar 

  18. Turner, N. A., Hall, K. T., Ball, S. G., & Porter, K. E. (2007). Selective gene silencing of either MMP-2 or MMP-9 inhibits invasion of human saphenous vein smooth muscle cells. Atherosclerosis., 193(1), 36–43.

    Article  PubMed  CAS  Google Scholar 

  19. George, S. J., Baker, A. H., Angelini, G. D., & Newby, A. C. (1998). Gene transfer of tissue inhibitor of metalloproteinase-2 inhibits metalloproteinase activity and neointima formation in human saphenous veins. Gene Therapy, 5(11), 1552–1560.

    Article  PubMed  CAS  Google Scholar 

  20. Botos, I., Scapozza, L., Zhang, D., Liotta, L. A., & Meyer, E. F. (1996). Batimastat, a potent matrix mealloproteinase inhibitor, exhibits an unexpected mode of binding. Proceedings of National Academy of Science U S A., 93, 2749–2754.

    Article  CAS  Google Scholar 

  21. Wong, A. P., Nili, N., & Strauss, B. H. (2005). In vitro differences between venous and arterial-derived smooth muscle cells: Potential modulatory role of decorin. Cardiovascular Research, 65(3), 702–710.

    Article  PubMed  CAS  Google Scholar 

  22. Turner, N. A., Ho, S., Warburton, P., O’Regan, D. J., & Porter, K. E. (2007). Smooth muscle cells cultured from human saphenous vein exhibit increased proliferation, invasion, and mitogen-activated protein kinase activation in vitro compared with paired internal mammary artery cells. Journal of Vascular Surgery, 45(5), 1022–1028.

    Article  PubMed  Google Scholar 

  23. Iliescu, B., & Haskal, Z. J. (2012). Advanced techniques for removal of retrievable inferior vena cava filters. Cardiovascular and Interventional Radiology, 35(4), 741–750.

    Article  PubMed  Google Scholar 

  24. Duszak, R. Jr., Parker, L., Levin, D. C., & Rao, V. M. (2011). Placement and removal of inferior vena cava filters: National trends in the medicare population. Journal of the American College of Radiology, 8(7), 483–489.

    Article  PubMed  Google Scholar 

  25. Kuo, W. T., Odegaard, J. I., Louie, J. D., et al. (2011). Photothermal ablation with the excimer laser sheath technique for embedded inferior vena cava filter removal: Initial results from a prospective study. Journal of Vascular and Interventional Radiology, 22(6), 813–823.

    Article  PubMed  Google Scholar 

  26. Saito, N., Shimamoto, T., Takeda, T., et al. (2010). Excimer laser-assisted retrieval of Günther Tulip vena cava filters: A pilot study in a canine Model. Journal of Vascular and Interventional Radiology, 21(5), 719–724.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This article was supported by research grants from the Scientific Research Fund of Liaoning Science and Technology Agency, China (No. 2008225010-5) and the Scientific Research Fund of Liaoning Education Agency, China (No. 2007T183) and the Scientific Research Fund of First Hospital of CMU (No. FSFH1006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Wang.

Additional information

Liang Xiao and Man Wang contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, L., Wang, M. MMPI Drug-Eluting IVC Filter Decreases Adhesion Between Caval Wall and Filter. Cell Biochem Biophys 65, 159–161 (2013). https://doi.org/10.1007/s12013-012-9411-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9411-9

Keywords

Navigation