Skip to main content

Advertisement

Log in

Q2N and S65D Substitutions of Ubiquitin Unravel Functional Significance of the Invariant Residues Gln2 and Ser65

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Ubiquitin is a small, globular protein, structure of which has been perfected and conserved through evolution to manage diverse functions in the macromolecular metabolism of eukaryotic cells. Several non-homologous proteins interact with ubiquitin through entirely different motifs. Though the roles of lysines in the multifaceted functions of ubiquitin are well documented, very little is known about the contribution of other residues. In the present study, the importance of two invariant residues, Gln2 and Ser65, have been examined by substituting them with Asn and Asp, respectively, generating single residue variants of ubiquitin UbQ2N and UbS65D. Gln2 and Ser65 form part of parallel G1 β-bulge adjacent to Lys63, a residue involved in DNA repair, cell-cycle regulated protein synthesis and imparting resistance to protein synthesis inhibitors. The secondary structure of variants is similar to that of UbF45W, a structural homologue of wild-type ubiquitin (UbWt). However, there are certain functional differences observed in terms of resistance to cycloheximide, while there are no major differences pertaining to growth under normal conditions, adherence to N-end rule and survival under heat stress. Further, expression of UbQ2N impedes protein degradation by ubiquitin fusion degradation (UFD) pathway. Such differential responses with respect to functions of ubiquitin produced by mutations may be due to interference in the interactions of ubiquitin with selected partner proteins, hint at biomedical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pagano, M. (1997). Cell cycle regulation by ubiquitin pathway. FASEB Journal, 11, 1066–1075.

    Google Scholar 

  2. Levinger, L., & Varshavsky, A. (1982). Selective arrangement of ubiquitinated and D1 protein- containing nucleosomes within the drosophila genome. Cell, 28, 375–385.

    Article  PubMed  CAS  Google Scholar 

  3. Jentsch, S., McGrath, J. P., & Varshavsky, A. (1987). The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature, 329, 131–134.

    Article  PubMed  CAS  Google Scholar 

  4. Hochstrasser, M., & Varshavsky, A. (1990). In vivo degradation of a transcriptional regulator: The yeast Matα2 repressor. Cell, 61, 697–708.

    Article  PubMed  CAS  Google Scholar 

  5. Varshavsky, A. (1997). The ubiquitin system. Trends in Biochemical Sciences, 22, 383–387.

  6. Weissmann, A. M. (1997). Regulating protein degradation by ubiquitination. Immunology Today, 18, 189–196.

    Article  Google Scholar 

  7. Galan, J. M., Moreau, V., Andre, B., Volland, C., & Haguenauer-Tsapis, R. (1996). Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin protein ligase is required for endocytosis of the yeast uracil permease. Journal of Biological Chemistry, 271, 10946–10952.

    Article  PubMed  CAS  Google Scholar 

  8. Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.

    Article  PubMed  CAS  Google Scholar 

  9. Pickart, C., & Fushman, D. (2004). Polyubiquitin chains: Polymeric protein signals. Current Opinion in Chemical Biology, 8, 610–616.

    Article  PubMed  CAS  Google Scholar 

  10. Schwartz, A. L., & Ciechanover, A. (2009). Targeting proteins for destruction by the ubiquitin system: Implications for human pathobiology. Annual Review of Pharmacology and Toxicology, 49, 73–96.

    Article  PubMed  CAS  Google Scholar 

  11. Reinstein, E., & Ciechanover, A. (2006). Protein degradation and human diseases: The ubiquitin connection. Annals of Internal Medicine, 145, 676–684.

    PubMed  Google Scholar 

  12. Gavilanes, J. G., de Buitrago, G. G., Castells, R. P., & Rodrigues, R. (1982). Isolation, characterization, and amino acid sequence of a ubiquitin like protein from insect eggs. Journal of Biological Chemistry, 257, 10267–10270.

    PubMed  CAS  Google Scholar 

  13. Watson, D. C., Leavy, W. B., & Dixon, G. H. (1978). Free ubiquitin is a non-histone protein of trout testis chromatin. Nature, 276, 196–198.

    Article  PubMed  CAS  Google Scholar 

  14. Schlesinger, D. H., Goldstein, G., & Nail, H. D. (1975). Complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells. Biochemistry, 14, 2214–2218.

    Article  PubMed  CAS  Google Scholar 

  15. Schlesinger, D. H., & Goldstein, G. (1975). Molecular conservation of 74 amino acid sequence of ubiquitin between cattle and man. Nature, 255, 423–424.

    Article  PubMed  CAS  Google Scholar 

  16. Wilkinson, K. D., Cox, M. J., O’Cornnor, B. B., & Shapira, R. (1986). Structure and activities of a variant ubiquitin sequence from bakers’ yeast. 1986. Biochemistry, 25, 4999–5004.

    Article  PubMed  CAS  Google Scholar 

  17. Vierstra, R. D., Langan, S. M., & Schaller, G. E. (1986). Complete amino acid sequence of ubiquitin from the higher plant Avena sativa. Biochemistry, 25, 3105–3108.

    Article  CAS  Google Scholar 

  18. Jentsch, S., & Pyrowolakis, G. (2000). Ubiquitin and its kin: How close are the family ties? Trends in Cell Biology, 10, 335–342.

    Article  PubMed  CAS  Google Scholar 

  19. Vijay-kumar, S., Bugg, C. E., & Cook, W. J. (1987). Structure of ubiquitin refined at 1.8 Å resolutions. Journal of Molecular Biology, 194, 513–544.

    Google Scholar 

  20. Briggs, M. S., & Roder, H. (1992). Early hydrogen-bonding events in the folding reaction of ubiquitin. Proceedings of the National Academy of Sciences of the United States of America, 89, 2017–2021.

    Article  PubMed  CAS  Google Scholar 

  21. Loladze, V. V., Ermolenko, D. N., & Makhatadze, G. I. (2001). Heat capacity changes upon burial of polar and nonpolar groups in proteins. Protein Science, 10, 1343–1352.

    Article  PubMed  CAS  Google Scholar 

  22. Loladze, V. V., & Makhatadze, G. I. (2002). Removal of surface charge–charge interactions from ubiquitin leaves the protein folded and very stable. Protein Science, 11, 174–177.

    Article  PubMed  CAS  Google Scholar 

  23. Burch, T. J., & Hass, A. L. (1994). Site-directed mutagenesis of ubiquitin differential roles for arginine in the interaction with ubiquitin-activating enzyme. Biochemistry, 33, 7300–7308.

    Article  PubMed  CAS  Google Scholar 

  24. Mishra, P., Volety, S., Rao, C. M., & Prabha, C. R. (2009). Glutamate64 to glycine substitution in G1 β-bulge of ubiquitin impairs function and stabilizes structure of the protein. Journal of Biochemistry, 146, 563–569.

    Article  PubMed  CAS  Google Scholar 

  25. Khorasnizadadeh, S., Peters, L. D., Butt, T. R., & Roder, H. (1993). Folding and stability of a tryptophan containing mutant of ubiquitin. Biochemistry, 32, 7054–7063.

    Article  Google Scholar 

  26. Cox, J. P. L., Evans, P. A., Packman, L. C., Williams, D. H., & Wolfson, D. N. (1993). Dissecting the structure of a partially folded protein. Circular dichroism and nuclear magnetic resonance studies of peptides from ubiquitin. Journal of Molecular Biology, 234, 483–492.

    Article  PubMed  CAS  Google Scholar 

  27. Platt, G. W., Simpson, S. A., Layfield, R., & Searle, M. S. (2003). Stability and folding kinetics of a ubiquitin mutant with a strong propensity for non-native β-hairpin conformation in the unfolded state. Biochemistry, 42, 13762–13771.

    Article  PubMed  CAS  Google Scholar 

  28. Spence, J., Sadis, S., Haas, A. L., & Finley, D. (1995). Ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Molecular and Cellular Biology, 15, 1265–1273.

    PubMed  CAS  Google Scholar 

  29. Arnason, T., & Ellison, M. J. (1994). Stress resistance in Saccharomyces cerevisiae is strongly correlated with assembly of a novel type of multiubiquitin chain. Molecular and Cellular Biology, 14, 7876–7883.

    PubMed  CAS  Google Scholar 

  30. Chan, A. W. E., Hutchinson, E. G., Harris, D., & Thornton, J. M. (1993). Identification, classification, and analysis of β-bulges in proteins. Protein Science, 2, 1574–1590.

    Article  PubMed  CAS  Google Scholar 

  31. Spence, J., Gali, R., Dittmar, G., Sherman, F., Karin, M., & Finley, D. (2000). Cell cycle–regulated modification of the ribosome by a variant multiubiquitin chain. Cell, 102, 67–76.

    Article  PubMed  CAS  Google Scholar 

  32. Finley, D., Ozkaynak, E., & Varshavsky, A. (1987). The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell, 48, 1035–1046.

    Article  PubMed  CAS  Google Scholar 

  33. Bachmair, A., Finley, D., & Varshavsky, A. (1986). In vivo half-life of a protein is a function of its amino-terminal residue. Science, 223, 179–186.

    Article  Google Scholar 

  34. Finley, D., Sadis, S., Monia, B. P., Boucher, P., Ecker, D. J., Cooke, S. T., et al. (1994). Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Molecular and Cellular Biology, 14, 5501–5509.

    PubMed  CAS  Google Scholar 

  35. Ecker, D. J., Butt, T. R., Marsh, J., Sternberg, E. J., Margolis, N., Monia, B. P., et al. (1987). Gene synthesis, expression, structures and functional activities of site-specific mutants of ubiquitin. Journal of Biological Chemistry, 262, 14213–14221.

    PubMed  CAS  Google Scholar 

  36. Chen, P., Johnson, P., Sommer, T., Jentsch, S., & Hochstrasser, M. (1993). Multiple ubiquitin- conjugating enzymes participate in the in vivo degradation of the yeast MATα2 repressor. Cell, 74, 357–369.

    Article  PubMed  CAS  Google Scholar 

  37. Wilkinson, K. D., Urban, M. K., & Haas, A. L. (1980). Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. Journal of Biological Chemistry, 255, 7529–7532.

    PubMed  CAS  Google Scholar 

  38. Hershko, A., Ciechanover, A., & Rose, I. A. (1979). Resolution of the ATP-dependent proteolytic system from reticulocytes: A component that interacts with ATP. Proceedings of the National Academy of Sciences of the United States of America, 76, 3107–3110.

    Article  PubMed  CAS  Google Scholar 

  39. Ciechanover, A., Hod, Y., & Hershko, A. (1978). A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochemical and Biophysical Research Communications, 81, 1100–1105.

    Article  Google Scholar 

  40. Haas, A. L., & Wilkinson, K. D. (1985). The large scale purification of ubiquitin from human erythrocytes. Preparative Biochemistry, 15, 49–60.

    Article  PubMed  CAS  Google Scholar 

  41. Johnson, E. S., Bartel, B., Seufert, W., & Varshavsky, A. (1992). Ubiquitin as a degradation signal. The EMBO Journal, 11, 497–505.

    PubMed  CAS  Google Scholar 

  42. Varshavsky, A. (1996). The N-end rule: Functions, mysteries, uses. Proceedings of the National Academy of Sciences of the United States of America, 93, 12142–12149.

    Article  PubMed  CAS  Google Scholar 

  43. Johnson, E. S., Ma, P. C., Ota, I. M., & Varshavsky, A. (1995). A proteolytic pathway that recognizes ubiquitin as a degradation signal. The Journal of Biological Chemistry, 270, 17442–17456.

    Article  PubMed  CAS  Google Scholar 

  44. Hanna, J., Leggett, D. S., & Finley, D. (2003). Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Molecular and Cellular Biology, 23, 9251–9261.

    Article  PubMed  CAS  Google Scholar 

  45. Kuwajima, K. (1989). The molten globule state as a clue for understanding the folding and cooperativity of globularprotein structure. Proteins, 6, 87–103.

    Article  PubMed  CAS  Google Scholar 

  46. Buck, M., Radford, S. E., & Dobson, C. M. (1993). A partially folded state of hen egg-white lysozyme in trifluoroethanol: structural characterization and implications for protein folding. Biochemistry, 32, 669–678.

    Article  PubMed  CAS  Google Scholar 

  47. Ratnaprabha, C., & Sasidhar, Y. U. (1998). Conformational features of disulfide intact and reduced forms of hen egg white lysozyme in aqueous solution in the presence of trifluoroethanol (TFE): implications for protein folding intermediates. Journal of the Chemical Society Faraday Transactions, 94, 3631–3637.

    Article  CAS  Google Scholar 

  48. Hershko, A., & Ciechanover, A. (1992). The ubiquitin system for protein degradation. Annual Review of Biochemistry, 61, 761–807.

    Article  PubMed  CAS  Google Scholar 

  49. Pickart, C. M. (1997). Targeting of substrates to the 26S proteasome. FASEB Journal, 11, 1055–1066.

    PubMed  CAS  Google Scholar 

  50. Ciechanover, A. (1998). The ubiquitin–proteasome pathway: on protein death and cell life. The EMBO Journal, 17, 7151–7160.

    Article  PubMed  CAS  Google Scholar 

  51. Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C., Cheng, D., Marsischky, G., et al. (2003). A proteomics approach to understanding protein ubiquitination. Nature Biotechnology, 21, 921–926.

    Article  PubMed  CAS  Google Scholar 

  52. Saeki, Y., Kudo, T., Sone, T., Kikuchi, Y., Yokosawa, H., Toh-e, A., et al. (2009). Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO Journal, 28, 359–371.

    Article  PubMed  CAS  Google Scholar 

  53. Baboshina, O. V., & Haas, A. L. (1996). Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2EPF and RAD6 are recognized by 26 S proteasome subunit 5*. Journal of Biological Chemistry, 271, 2823–2831.

    Article  PubMed  CAS  Google Scholar 

  54. Koegl, M., Hoppe, T., Schlenker, S., Ulrich, H. D., Mayer, T. U., & Jentsch, S. (1999). A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell, 96, 635–644.

    Article  PubMed  CAS  Google Scholar 

  55. Jin, L., Williamson, A., Banerjee, S., Philipp, I., & Rape, M. (2008). Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell, 133, 653–665.

    Article  PubMed  CAS  Google Scholar 

  56. Wang, L., Mao, X., Ju, D., & Xie, Y. (2004). Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase. Journal of Biological Chemistry, 279, 55218–55223.

    Article  PubMed  CAS  Google Scholar 

  57. Mulder, L. C. F., & Muesing, M. A. (2000). Degradation of HIV-1 integrase by the N-end rule pathway. Journal of Biological Chemistry, 275, 29749–29753.

    Article  PubMed  CAS  Google Scholar 

  58. Aviel, S., Winberg, G., Massucci, M., & Ciechanover, A. (2000). Degradation of the Epstein-Barr virus latent membrane protein 1 (LMP1) by the ubiquitin-proteasome pathway. Targeting via ubiquitination of the N-terminal residue. Journal of Biological Chemistry, 275, 23491–23499.

    Article  PubMed  CAS  Google Scholar 

  59. Breitschopf, K., Bengal, E., Ziv, T., Admon, A., & Ciechanover, A. (1998). A novel site for ubiquitination: The N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO Journal, 17, 5964–5973.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

C.R.P. thanks the University Grants Commission, India, for the research grant. The said author is grateful to Prof. Mark Searle and Prof. Daniel Finley for providing plasmids and strains necessary for the study. The author acknowledges the help received from her students Brinda Panchamia and Mrinal Sharma in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ratna Prabha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, P., Ratna Prabha, C., Rao, C.M. et al. Q2N and S65D Substitutions of Ubiquitin Unravel Functional Significance of the Invariant Residues Gln2 and Ser65. Cell Biochem Biophys 61, 619–628 (2011). https://doi.org/10.1007/s12013-011-9247-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9247-8

Keywords

Navigation