Skip to main content

Advertisement

Log in

FGF2 Prevents Sunitinib-Induced Cardiotoxicity in Zebrafish and Cardiomyoblast H9c2 Cells

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Sunitinib is used extensively in the treatment of metastatic renal cell carcinoma and imatinib-resistant gastrointestinal stromal tumors. However, the undesirable cardiotoxic effects of sunitinib, such as congestive heart failure and hypertension, limit its use in the clinical setting. As multiple receptor tyrosine kinases are inhibited by sunitinib, it raises a question as to which target mediates sunitinib-induced cardiotoxicity. Here, we reported that the injection of fibroblast growth factor 2 (FGF2) mRNA into one- to two-cell stage embryos protected against sunitinib-induced cardiotoxicity in zebrafish. In addition, FGF2 significantly prevented sunitinib-induced cardiotoxicity in cardiomyoblast H9c2 cells, possibly via activating the PLC-γ/c-Raf/CREB pathway. Importantly, FGF2 did not compromise the antitumor activity of sunitinib in Caki-1 and OS-RC-2 renal cell carcinoma cells. Molecular docking simulations further revealed an interaction between the tyrosine kinase domain of FGF receptor 1 (FGFR1) and sunitinib. Taken together, our results clearly demonstrated that FGF2 inhibition plays an important role in sunitinib-induced cardiotoxicity both in vitro and in vivo. This study also provided a basis for further research on sunitinib-induced cardiotoxicity and may allow rational design of new sunitinib derivatives with fewer or weak cardiotoxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BA:

Bulbus arteriosus

CREB:

cAMP response element-binding protein

FGF2:

Fibroblast growth factor 2

Hpf:

Hours post-fertilization

LDH:

Lactate dehydrogenase

PLC:

Phospholipase C

SV:

Sinus venosus

TKI:

Tyrosine kinase inhibitor

References

  1. Karaman, M. W., Herrgard, S., Treiber, D. K., Gallant, P., Atteridge, C. E., Campbell, B. T., et al. (2008). A quantitative analysis of kinase inhibitor selectivity. Nature Biotechnology, 26, 127–132.

    Article  CAS  PubMed  Google Scholar 

  2. Blay, J. Y. (2010). Pharmacological management of gastrointestinal stromal tumours: an update on the role of sunitinib. Annals of Oncology, 21, 208–215.

    Article  PubMed  Google Scholar 

  3. Chu, T. F., Rupnick, M. A., Kerkela, R., Dallabrida, S. M., Zurakowski, D., Nguyen, L., et al. (2007). Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet, 370, 2011–2019.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Telli, M. L., Witteles, R. M., Fisher, G. A., & Srinivas, S. (2008). Cardiotoxicity associated with the cancer therapeutic agent sunitinib malate. Annals of Oncology, 19, 1613–1618.

    Article  CAS  PubMed  Google Scholar 

  5. Force, T., & Kolaja, K. L. (2011). Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nature Reviews Drug Discovery, 10, 111–126.

    Article  CAS  PubMed  Google Scholar 

  6. Chan, J., & Mably, J. D. (2011). Dissection of Cardiovascular Development and Disease Pathways in Zebrafish. In K. T. Chang & K. T. Min (Eds.), Progress in molecular biology and translational science: animal models of human disease (Vol. 100, pp. 111–153). San Diego: Elsevier Academic Press Inc.

    Chapter  Google Scholar 

  7. Chen, J. N., Haffter, P., Odenthal, J., Vogelsang, E., Brand, M., van Eeden, F. J., et al. (1996). Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development, 123, 293–302.

    CAS  PubMed  Google Scholar 

  8. Challa, A. K., & Chatti, K. (2013). Conservation and early expression of zebrafish tyrosine kinases support the utility of zebrafish as a model for tyrosine kinase biology. Zebrafish, 10, 264–274.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Cheng, H., Kari, G., Dicker, A. P., Rodeck, U., Koch, W. J., & Force, T. (2011). A novel preclinical strategy for identifying cardiotoxic kinase inhibitors and mechanisms of cardiotoxicity. Circulation Research, 109, 1401–1409.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Powers, C. J., McLeskey, S. W., & Wellstein, A. (2000). Fibroblast growth factors, their receptors and signaling. Endocrine-Related Cancer, 7, 165–197.

    Article  CAS  PubMed  Google Scholar 

  11. Jiang, Z. S., Padua, R. R., Ju, H., Doble, B. W., Jin, Y., Hao, J., et al. (2002). Acute protection of ischemic heart by FGF-2: Involvement of FGF-2 receptors and protein kinase C. American Journal of Physiology Heart and Circulatory Physiology, 282, H1071–H1080.

    Article  CAS  PubMed  Google Scholar 

  12. Marais, E., Genade, S., & Lochner, A. (2008). CREB activation and ischaemic preconditioning. Cardiovascular Drugs and Therapy, 22, 3–17.

    Article  CAS  PubMed  Google Scholar 

  13. Kumar, R., Crouthamel, M. C., Rominger, D. H., Gontarek, R. R., Tummino, P. J., Levin, R. A., & King, A. G. (2009). Myelosuppression and kinase selectivity of multikinase angiogenesis inhibitors. British Journal of Cancer, 101, 1717–1723.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Huang, C. J., Tu, C. T., Hsiao, C. D., Hsieh, F. J., & Tsai, H. J. (2003). Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Developmental Dynamics, 228, 30–40.

    Article  CAS  PubMed  Google Scholar 

  15. Westerfield, M. (1995). The zebrafish book: A guide for the laboratory use of zebrafish (Danio rerio), 3rd Edition Eugene (pp. 267–272). OR: University of Oregon.

  16. Kim, B., Huang, G., Ho, W. B., & Greenspan, D. S. (2011). Bone morphogenetic protein-1 processes insulin-like growth factor-binding protein 3. Journal of Biological Chemistry, 286, 29014–29025.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Antkiewicz, D. S., Burns, C. G., Carney, S. A., Peterson, R. E., & Heideman, W. (2005). Heart malformation is an early response to TCDD in embryonic zebrafish. Toxicological Sciences, 84, 368–377.

    Article  CAS  PubMed  Google Scholar 

  18. Cui, G., Shan, L., Hung, M., Lei, S., Choi, I., Zhang, Z., et al. (2013). A novel Danshensu derivative confers cardioprotection via PI3 K/Akt and Nrf2 pathways. International Journal of Cardiology, 168, 1349–1359.

    Article  PubMed  Google Scholar 

  19. Mohammadi, M., McMahon, G., Sun, L., Tang, C., Hirth, P., Yeh, B. K., et al. (1997). Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science, 276, 955–960.

    Article  CAS  PubMed  Google Scholar 

  20. Jain, A. N. (2003). Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine. Journal of Medicinal Chemistry, 46, 499–511.

    Article  CAS  PubMed  Google Scholar 

  21. French, K. J., Coatney, R. W., Renninger, J. P., Hu, C. X., Gales, T. L., Zhao, S. F., et al. (2010). Differences in effects on myocardium and mitochondria by angiogenic inhibitors suggest separate mechanisms of cardiotoxicity. Toxicologic Pathology, 38, 691–702.

    Article  CAS  PubMed  Google Scholar 

  22. Marcolino, M. S., Ribeiro, A. L., Clementino, N. C. D., Nunes, M. D. P., Barbosa, M. M., Silva, M., et al. (2011). The use of imatinib mesylate has no adverse effects on the heart function. Results of a pilot study in patients with chronic myeloid leukemia. Leukemia Research, 35, 317–322.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang, Z. S., Jeyaraman, M., Wen, G. B., Fandrich, R. R., Dixon, I. M., Cattini, P. A., & Kardami, E. (2007). High- but not low-molecular weight FGF-2 causes cardiac hypertrophy in vivo; possible involvement of cardiotrophin-1. Journal of Molecular and Cellular Cardiology, 42, 222–233.

    Article  CAS  PubMed  Google Scholar 

  24. Hescheler, J., Meyer, R., Plant, S., Krautwurst, D., Rosenthal, W., & Schultz, G. (1991). Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circulation Research, 69, 1476–1486.

    Article  CAS  PubMed  Google Scholar 

  25. Anestopoulos, I., Kavo, A., Tentes, I., Kortsaris, A., Panayiotidis, M., Lazou, A., & Pappa, A. (2013). Silibinin protects H9c2 cardiac cells from oxidative stress and inhibits phenylephrine-induced hypertrophy: potential mechanisms. Journal of Nutritional Biochemistry, 24, 586–594.

    Article  CAS  PubMed  Google Scholar 

  26. House, S. L., Newman, G., & Schultz, J. J. (2010). Human recombinant low molecular weight fibroblast growth factor 2 protects the heart from reperfusion injury through activation of fgf receptors and nitric oxide signaling. Annals of Emergency Medicine, 56, S5–S5.

    Article  Google Scholar 

  27. House, S. L., Melhorn, S. J., Newman, G., Doetschman, T., & Schultz, J. E. (2007). The protein kinase C pathway mediates cardioprotection induced by cardiac-specific overexpression of fibroblast growth factor-2. American Journal of Physiology-Heart and Circulatory Physiology, 293, H354–H365.

    Article  CAS  PubMed  Google Scholar 

  28. Chen, X. Q., Chen, L. L., Fan, L., Fang, J., Chen, Z. Y., & Li, W. W. (2014). Stem cells with FGF4-bFGF fused gene enhances the expression of bFGF and improves myocardial repair in rats. Biochemical and Biophysical Research Communications, 447, 145–151.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Science and Technology Development Fund Macao SAR, China (Grant No. 014/2011/A1) and the National Natural Science Foundation of China (Grant No. 31301192).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Ming Yuen Lee.

Additional information

Guozhen Cui and Huanxian Chen have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, G., Chen, H., Cui, W. et al. FGF2 Prevents Sunitinib-Induced Cardiotoxicity in Zebrafish and Cardiomyoblast H9c2 Cells. Cardiovasc Toxicol 16, 46–53 (2016). https://doi.org/10.1007/s12012-015-9315-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-015-9315-1

Keywords

Navigation