Skip to main content

Advertisement

Log in

Low Level Tumor Necrosis Factor-Alpha Protects Cardiomyocytes Against High Level Tumor Necrosis Factor-Alpha: Brief Insight into a Beneficial Paradox

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Whether tumor necrosis factor-alpha (TNFα) caused beneficial or detrimental cardiovascular effects remains poorly defined. Anti-TNFα agents improved cardiac end points in chronic rheumatic diseases characterized by progressive deterioration of cardiac function. In contrast, anti-TNFα agents did not always improve but actually worsened cardiac function in non-rheumatic patients with heart failure (HF), in spite of that HF usually accompanies with high circulating levels of TNFα. To shed light on these mixed findings, we characterized the effects of TNFα in H9c2 cardiomyocytes. Cells were incubated for 24 h with increasing concentrations of TNFα, hydrogen peroxide, aminotriazole, or etoposide. Posttreatment cell viability was assessed by antimycin A-inhibitable reduction of 3-(4,dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and the IC50 value of each test compound was defined. H9c2 cells were also preconditioned with a low non-toxic concentration of TNFα and then re-challenged with increasing concentrations of TNFα and other stressor agents. In re-challenge experiments, all of the IC50 values increased significantly, with the IC50 value of TNFα increasing approximately 16-fold. TNFα preconditioning increased cardiomyocytes shedding of the external portion of transmembrane type 1 and type 2 TNFα receptors [(soluble TNFα receptors (sTNFR)]. Levels of survival-oriented soluble TNFR2 (sTNFR2) always exceeded those of death-oriented sTNFR1. When exposed to TNFα at its IC50 value, preconditioned cardiomyocytes showed an increased release of sTNFR2 but not sTNFR1. These results denoted that preconditioning by “low TNFα” helped cardiomyocyte to withstand toxicity from “high TNFα” or other agents. These results also suggested that beneficial or detrimental effects of anti-TNFα agents might well depend on whether these agents spared or intercepted discrete amounts of TNFα that preconditioned cardiomyocytes and made them more resistant to high concentrations of TNFα.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Apostolaki, M., Armaka, M., Victoratos, P., & Kollias, G. (2010). Cellular mechanisms of TNF function in models of inflammation and autoimmunity. Current Directions in Autoimmunity, 11, 1–26.

    Article  PubMed  CAS  Google Scholar 

  2. Kollias, G., Douni, E., Kassiotis, G., & Kontoyiannis, D. (1999). The function of tumour necrosis factor and receptors in models of multi-organ inflammation, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Annals of the Rheumatic Diseases, 58(1), I32–I39.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Torre-Amione, G., Kapadia, S., Lee, J., Durand, J. B., Bies, R. D., Young, J. B., et al. (1996). Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation, 93, 704–711.

    Article  PubMed  CAS  Google Scholar 

  4. McTiernan, C. F., & Feldman, A. M. (2000). The role of tumor necrosis factor alpha in the pathophysiology of congestive heart failure. Current Cardiology Reports, 2, 189–197.

    Article  PubMed  CAS  Google Scholar 

  5. Stamm, C., Friehs, I., Cowan, D. B., Moran, A. M., Cao-Danh, H., Duebener, L. F., et al. (2001). Inhibition of tumor necrosis factor-alpha improves postischemic recovery of hypertrophied hearts. Circulation, 104, I350–I355.

    Article  PubMed  CAS  Google Scholar 

  6. Kosar, F., Aksoy, Y., Ozguntekin, G., Ozerol, I., & Varol, E. (2006). Relationship between cytokines and tumour markers in patients with chronic heart failure. European Journal of Heart Failure, 8, 270–274.

    Article  PubMed  CAS  Google Scholar 

  7. Anker, S. D., & Coats, A. J. (2002). How to RECOVER from RENAISSANCE? The significance of the results of RECOVER, RENAISSANCE, RENEWAL and ATTACH. International Journal of Cardiology, 86, 123–130.

    Article  PubMed  Google Scholar 

  8. Westlake, S. L., Colebatch, A. N., Baird, J., Curzen, N., Kiely, P., Quinn, M., et al. (2011). Tumour necrosis factor antagonists and the risk of cardiovascular disease in patients with rheumatoid arthritis: A systematic literature review. Rheumatology, 50, 518–531.

    Article  PubMed  CAS  Google Scholar 

  9. Kubota, T., McTiernan, C. F., Frye, C. S., Demetris, A. J., & Feldman, A. M. (1997). Cardiac-specific overexpression of tumor necrosis factor-alpha causes lethal myocarditis in transgenic mice. Journal of Cardiac Failure, 3, 117–124.

    Article  PubMed  CAS  Google Scholar 

  10. Lecour, S., Smith, R. M., Woodward, B., Opie, L. H., Rochette, L., & Sack, M. N. (2002). Identification of a novel role for sphingolipid signaling in TNF alpha and ischemic preconditioning mediated cardioprotection. Journal of Molecular and Cellular Cardiology, 34, 509–518.

    Article  PubMed  CAS  Google Scholar 

  11. Cacciapaglia, F., Menna, P., Navarini, L., Afeltra, A., Salvatorelli, E., & Minotti, G. (2011). Matters of the heart: The case of TNFalpha-targeting drugs. Molecular Interventions, 11, 79–87.

    Article  PubMed  CAS  Google Scholar 

  12. Hescheler, J., Meyer, R., Plant, S., Krautwurst, D., Rosenthal, W., & Schultz, G. (1991). Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circulation Research, 69, 1476–1486.

    Article  PubMed  CAS  Google Scholar 

  13. Kitamura, Y., Koide, M., Akakabe, Y., Matsuo, K., Shimoda, Y., Soma, Y., et al. (2014). Manipulation of cardiac phosphatidylinositol 3-kinase (PI3K)/Akt signaling by apoptosis regulator through modulating IAP expression (ARIA) regulates cardiomyocyte death during doxorubicin-induced cardiomyopathy. Journal of Biological Chemistry, 289, 2788–2800.

    Article  PubMed  CAS  Google Scholar 

  14. Isomoto, S., Kawakami, A., Arakaki, T., Yamashita, S., Yano, K., & Ono, K. (2006). Effects of antiarrhythmic drugs on apoptotic pathways in H9c2 cardiac cells. Journal of Pharmacological Sciences, 101, 318–324.

    Article  PubMed  CAS  Google Scholar 

  15. Kluza, J., Marchetti, P., Gallego, M. A., Lancel, S., Fournier, C., Loyens, A., et al. (2004). Mitochondrial proliferation during apoptosis induced by anticancer agents: Effects of doxorubicin and mitoxantrone on cancer and cardiac cells. Oncogene, 23, 7018–7030.

    Article  PubMed  CAS  Google Scholar 

  16. L’Ecuyer, T., Sanjeev, S., Thomas, R., Novak, R., Das, L., Campbell, W., et al. (2006). DNA damage is an early event in doxorubicin-induced cardiac myocyte death. American Journal of Physiology Heart and Circulatory Physiology, 291, H1273–H1280.

    Article  PubMed  Google Scholar 

  17. Salvatorelli, E., Guarnieri, S., Menna, P., Liberi, G., Calafiore, A. M., Mariggiò, M. A., et al. (2006). Defective one- or two-electron reduction of the anticancer anthracycline epirubicin in human heart. Relative importance of vesicular sequestration and impaired efficiency of electron addition. Journal of Biological Chemistry, 281, 10990–11001.

    Article  PubMed  CAS  Google Scholar 

  18. Hasinoff, B. B., Patel, D., & Wu, X. (2013). The dual-targeted HER1/HER2 tyrosine kinase inhibitor lapatinib strongly potentiates the cardiac myocyte-damaging effects of doxorubicin. Cardiovascular Toxicology, 13, 33–47.

    Article  PubMed  CAS  Google Scholar 

  19. Bonavita, F., Stefanelli, C., Giordano, E., Columbaro, M., Facchini, A., Bonafè, F., et al. (2003). H9c2 cardiac myoblasts undergo apoptosis in a model of ischemia consisting of serum deprivation and hypoxia: Inhibition by PMA. FEBS Letters, 536, 85–91.

    Article  PubMed  CAS  Google Scholar 

  20. Granata, R., De Petrini, M., Trovato, L., Ponti, R., Pons, N., Ghè, C., et al. (2003). Insulin-like growth factor binding protein-3 mediates serum starvation- and doxorubicin-induced apoptosis in H9c2 cardiac cells. Journal of Endocrinological Investigation, 26, 1231–1241.

    Article  PubMed  CAS  Google Scholar 

  21. Alcendor, R. R., Kirshenbaum, L. A., Imai, S., Vatner, S. F., & Sadoshima, J. (2004). Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circulation Research, 95, 971–980.

    Article  PubMed  CAS  Google Scholar 

  22. Turakhia, S., Venkatakrishnan, C. D., Dunsmore, K., Wong, H., Kuppusamy, P., Zweier, J. L., et al. (2007). Doxorubicin-induced cardiotoxicity: Direct correlation of cardiac fibroblast and H9c2 cell survival and aconitase activity with heat shock protein 27. American Journal of Physiology Heart and Circulatory Physiology, 293, H3111–H3121.

    Article  PubMed  CAS  Google Scholar 

  23. Berridge, M. V., & Tan, A. S. (1993). Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Archives of Biochemistry and Biophysics, 303, 474–482.

    Article  PubMed  CAS  Google Scholar 

  24. Sack, M. N., Smith, R. M., & Opie, L. H. (2000). Tumor necrosis factor in myocardial hypertrophy and ischaemia—An anti-apoptotic perspective. Cardiovascular Research, 45, 688–695.

    Article  PubMed  CAS  Google Scholar 

  25. Torre-Amione, G., Kapadia, S., Lee, J., Bies, R. D., Lebovitz, R., & Mann, D. L. (1995). Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation, 92(6), 1487–1493.

    Article  PubMed  CAS  Google Scholar 

  26. Flaherty, M. P., Guo, Y., Tiwari, S., Rezazadeh, A., Hunt, G., Sanganalmath, S. K., et al. (2008). The role of TNF-alpha receptors p55 and p75 in acute myocardial ischemia/reperfusion injury and late preconditioning. Journal of Molecular and Cellular Cardiology, 45, 735–741.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Monden, Y., Kubota, T., Inoue, T., Tsutsumi, T., Kawano, S., Ide, T., et al. (2007). Tumor necrosis factor-alpha is toxic via receptor 1 and protective via receptor 2 in a murine model of myocardial infarction. American Journal of Physiology Heart and Circulatory Physiology, 293, H743–H753.

    Article  PubMed  CAS  Google Scholar 

  28. Rossol, M., Meusch, U., Pierer, M., Kaltenhäuser, S., Häntzschel, H., Hauschildt, S., et al. (2007). Interaction between transmembrane TNF and TNFR1/2 mediates the activation of monocytes by contact with T cells. The Journal of Immunology, 179, 4239–4248.

    Article  PubMed  CAS  Google Scholar 

  29. Martel-Pelletier, J., Mineau, F., Jolicoeur, F. C., & Pelletier, J. P. (1995). Modulation of TNFSR55 and TNFSR75 by cytokines and growth factors in human synovial fibroblasts. Journal of Rheumatology. Supplement, 43, 115–119.

    CAS  Google Scholar 

  30. Cabal-Hierro, L., & Lazo, P. S. (2012). Signal transduction by tumor necrosis factor receptors. Cellular Signalling, 24, 1297–1305.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang, N., Chen, T., Liu, C., Tang, B., Nie, L., An, H., et al. (2013). Inhibition of ubiquitin protein expression and 20S proteasome activity by irbesartan prevents post-infarction ventricular remodeling and decreases TNF-α generation. Biomedical Reports, 1, 935–939.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Cacciapaglia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cacciapaglia, F., Salvatorelli, E., Minotti, G. et al. Low Level Tumor Necrosis Factor-Alpha Protects Cardiomyocytes Against High Level Tumor Necrosis Factor-Alpha: Brief Insight into a Beneficial Paradox. Cardiovasc Toxicol 14, 387–392 (2014). https://doi.org/10.1007/s12012-014-9257-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-014-9257-z

Keywords

Navigation