Skip to main content
Log in

Apoptotic Cell Death in Cultured Cardiomyocytes Following Exposure to Low Concentrations of 4-Hydroxy-2-nonenal

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Lipid peroxidation (LP), induced by oxidative stress, is associated with degenerative processes. 4-Hydroxy-2-nonenal (HNE), a highly reactive diffusible product of LP, is considered by-product and mediator of oxidative stress. Its level increases under pathological conditions such as cardiovascular diseases. In this study, we partially characterized the mechanisms of HNE-mediated cytotoxicity in cardiomyocytes. After establishing that pathophysiological doses of HNE trigger cell death dependent on the incubation time and dose of HNE (LD50 = 4.4 μM), we tackled the mechanisms that underlie the cell death induced by HNE. Our results indicate that HNE rapidly increases intracellular Ca2+; it also increases the rate of reactive oxygen species generation and causes a loss of mitochondrial membrane potential (ΔΨm) as well as a decrease in the ATP and GSH levels. Such alterations result in the activation of caspase-3 and DNA breakdown, both characteristic features of apoptotic cell death, as well as disruption of the cytoskeleton. Moreover, the nucleophilic compounds N-acetyl-cysteine and β-mercapto-propionyl-glycine, and the synthetic antioxidant Trolox exert a potent antioxidant action against HNE damage; this suggests its use as effective compounds in order to reduce the damage occurred as consequence of cardiovascular disorders in which oxidative stress and hence LP take place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grassi, D., Desideri, G., Tiberti, S., & Ferri, C. (2009). Oxidative stress, endothelial dysfunction and prevention of cardiovascular diseases. AgroFOOD Industry Ii-tech, 20, 76–79.

    Google Scholar 

  2. Esterbauer, H., Schaur, R. J., & Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biology & Medicine, 11, 81–128.

    Article  CAS  Google Scholar 

  3. Uchida, K. (2003). 4-Hydroxy-2-nonenal: A product and mediator of oxidative stress. Progress in Lipid Research, 42, 318–343.

    Article  CAS  PubMed  Google Scholar 

  4. Anderson, E. J., Katunga, L. A., & Willis, M. S. (2011). Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart. Clinical and Experimental Pharmacology and Physiology, 39, 179–193.

    Article  Google Scholar 

  5. Hortigón-Vinagre, M. P., Chardonnet, S., Montigny, C., Gutiérrez-Martín, Y., Champeil, P., & Henao, F. (2011). Inhibition by 4-hydroxynonenal (HNE) of Ca2+ transport by SERCA1a: Low concentrations of HNE open protein-mediated leaks in the membrane. Free Radical Biology & Medicine, 50, 1700–1713.

    Article  Google Scholar 

  6. Leonarduzzi, G., Chiarpotto, E., Biasi, F., & Poli, G. (2005). 4-Hydroxynonenal and cholesterol oxidation products in atherosclerosis. Molecular Nutrition & Food Research, 49, 1044–1049.

    Article  CAS  Google Scholar 

  7. Yun, M. R., Im, D. S., Lee, S. J., Woo, J. W., Hong, K. W., Bae, S. S., et al. (2008). 4-hydroxynonenal contributes to macrophage foam cell formation through increased expression of class. A scavenger receptor at the level of translation. Free Radical Biology & Medicine, 45, 177–183.

    Article  CAS  Google Scholar 

  8. Mak, S., Lehotay, D. C., Yazdanpanah, M., Azevedo, E. R., Liu, P. P., & Newton, G. E. (2000). Unsaturated aldehydes including 4-OH-nonenal are elevated in patients with congestive heart failure. Journal of Cardiac Failure, 6, 108–114.

    Article  CAS  PubMed  Google Scholar 

  9. Kloner, R. A., Przyklenk, K., & Whittaker, P. (1989). Deleterious effects of oxygen radicals in ischemia/reperfusion. Resolved and unresolved issues. Circulation, 80, 1115–1127.

    Article  CAS  PubMed  Google Scholar 

  10. Palojoki, E., Saraste, A., Eriksson, A., Pulkki, K., Kallajoki, M., Voipio-Pulkki, L. M., et al. (2001). Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats. American Journal of Physiology Heart and Circulatory Physiology, 280, H2726–H2731.

    CAS  PubMed  Google Scholar 

  11. Chiong, M., Wang, Z. V., Pedrozo, Z., Cao, D. J., Troncoso, R., Ibacache, M., et al. (2011). Cardiomyocyte death: mechanisms and translational implications. Cell Death and Disease, 2, e244.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic Pathology, 35, 495–516.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Abarikwu, S. O., Pant, A. B., & Farombi, E. O. (2012). 4-Hydroxynonenal induces mitochondrial-mediated apoptosis and oxidative stress in SH-SY5Y human neuronal cells. Basic & Clinical Pharmacology & Toxicology, 110, 441–448.

    Article  CAS  Google Scholar 

  14. Cheng, J. Z., Sharma, R., Yang, Y., Singhal, S. S., Sharma, A., Saini, M. K., et al. (2001). Accelerated metabolism and exclusion of 4-hydroxynonenal through induction of RLIP76 and hGST5.8 is an early adaptive response of cells to heat and oxidative stress. Journal of Biological Chemistry, 276, 41213–41223.

    Article  CAS  PubMed  Google Scholar 

  15. Ji, B., Ito, K., & Horie, T. (2004). Multidrug resistance-associated protein 2 (MRP2) enhances 4-hydroxynonenal-induced toxicity in Madin-Darby canine kidney II cells. Chemical Research in Toxicology, 17, 158–164.

    Article  CAS  PubMed  Google Scholar 

  16. Nicotera, P., & Orrenius, S. (1986). Role of thiols in protection against biological reactive intermediates. Advances in Experimental Medicine and Biology, 197, 41–51.

    Article  CAS  PubMed  Google Scholar 

  17. Dhalla, N. S., Temsah, R. M., & Netticadan, T. J. (2000). Role of oxidative stress in cardiovascular diseases. Hypertension, 18, 655–673.

    Article  CAS  Google Scholar 

  18. Nakamura, K., Miura, D., Kusano, K. F., Fujimoto, Y., Sumita-Yoshikawa, W., Fuke, S., et al. (2009). 4-Hydroxy-2-nonenal induces calcium overload via the generation of reactive oxygen species in isolated rat cardiac myocytes. Journal of Cardiac Failure, 15, 709–716.

    Article  CAS  PubMed  Google Scholar 

  19. Soares, S. S., Henao, F., Aureliano, M., & Gutiérrez-Merino, C. (2008). Vanadate induces necrotic death in neonatal rat cardiomyocytes through mitochondrial membrane depolarization. Chemical Research in Toxicology, 21, 607–618.

    Article  CAS  PubMed  Google Scholar 

  20. Gutiérrez-Martín, Y., Martín-Romero, F. J., Henao, F., & Gutiérrez-Merino, C. (2005). Alteration of cytosolic free calcium homeostasis by SIN-1: High sensitivity of L-type Ca2+ channels to extracellular oxidative/nitrosative stress in cerebellar granule cells. Journal of Neurochemistry, 92, 973–989.

    Article  PubMed  Google Scholar 

  21. Morales-Hernández, A., Sánchez-Martín, F. J., Hortigón-Vinagre, M. P., Henao, F., & Merino, J. M. (2012). 2,3,7,8- Tetrachlorodibenzo-p-dioxin induces apoptosis by disruption of intracellular calcium homeostasis in human neural cell line SHSY5Y. Apoptosis, 17, 1170–1181.

    Article  PubMed  Google Scholar 

  22. Hallmann, A., Milczarek, R., Szkatuła, M., Woźniak, M., Spodnik, J. H., & Klimek, J. (2005). Mimicking of glutathione peroxidase deficiency by exposition of JAR cells to increased level of synthetic hydroperoxide. Folia Morphol (Warsz), 64, 304–308.

    CAS  Google Scholar 

  23. Dominguez-Rodriguez, A., Abreu-Gonzalez, P., de la Rosa, A., Vargas, M., Ferrer, J., & García, M. (2005). Role of endogenous interleukin-10 production and lipid peroxidation in patients with acute myocardial infarction treated with primary percutaneous transluminal coronary angioplasty interleukin-10 and primary angioplasty. International Journal of Cardiology, 99, 77–81.

    Article  PubMed  Google Scholar 

  24. Mak, S., Lehotay, D. C., Yazdanpanah, M., Azevedo, E., Liu, P., & Newton, G. E. (2000). Unsaturated aldehydes including 4-OH-nonenal are elevated in patients with congestive heart failure. Journal of Cardiac Failure, 6, 108–114.

    Article  CAS  PubMed  Google Scholar 

  25. Townsend, D. M., Tew, K. D., & Tapiero, H. (2003). The importance of glutathione in human disease. Biomedicine & Pharmacotherapy, 57, 145–155.

    Article  CAS  Google Scholar 

  26. Arakawa, M., & Ito, Y. (2007). N-acetylcysteine and neurodegenerative diseases: Basic and clinical pharmacology. Cerebellum, 19, 1–7.

    Google Scholar 

  27. Biswas, D., Sen, G., & Biswas, T. (2010). Reduced cellular redox status induced 4-hydroxynonenal-mediated caspase 3 activation leading to erythrocyte death during chronic arsenic exposure in rats. Toxicology and Applied Pharmacology, 244, 315–327.

    Article  CAS  PubMed  Google Scholar 

  28. Collins, J. A., Schandi, C. A., Young, K. K., Vesely, J., & Willingham, M. C. (1997). Major DNA fragmentation is a late event in apoptosis. Journal of Histochemistry and Cytochemistry, 47, 923–934.

    Article  Google Scholar 

  29. Telford, W. G., Komoriya, A., & Packard, B. Z. (2002). Detection of localized caspase activity in early apoptotic cells by laser scanning cytometry. Cytometry, 47, 81–88.

    Article  CAS  PubMed  Google Scholar 

  30. Bradbury, D. A., Simmons, T. D., Slater, K. J., & Crouch, S. P. (2000). Measurement of the ADP:ATP ratio in human leukemic cell lines can be used as an indicator of cell viability, necrosis and apoptosis. Journal of Immunological Methods, 240, 79–92.

    Article  CAS  PubMed  Google Scholar 

  31. Vanden Berghe, T., Vanlangenakker, N., Parthoens, E., Deckers, W., Devos, M., Festjens, N., et al. (2010). Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death and Differentiation, 17, 922–930.

    Article  CAS  PubMed  Google Scholar 

  32. VanWinkle, W. B., Snuggs, M., Miller, J. C., & Buja, L. M. (1994). Cytoskeletal alterations in cultured cardiomyocytes following exposure to the lipid peroxidation product, 4-hydroxynonenal. Cell Motil Cytoskeleton, 28, 119–134.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, Y., Sano, M., Shinmura, K., Tamaki, K., Katsumata, Y., Matsuhashi, T., et al. (2010). 4-Hydroxy-2-nonenal protects against cardiac ischemia-reperfusion injury via the Nrf2-dependent pathway. Journal of Molecular and Cellular Cardiology, 49, 576–586.

    Article  CAS  PubMed  Google Scholar 

  34. Zarkovic, N., Schaur, R. J., Puhl, H., Jurin, M., & Esterbauer, H. (1994). Mutual dependence of growth modifying effects of 4-hydroxynonenal and fetal calf serum in vitro. Free Radical Biology & Medicine, 16, 877–884.

    Article  CAS  Google Scholar 

  35. Rong, Y., & Distelhorst, C. W. (2008). Bcl-2 protein family members: Versatile regulators of calcium signaling in cell survival and apoptosis. Annual Review of Physiology, 70, 73–91.

    Article  CAS  PubMed  Google Scholar 

  36. Hill, B. G., Dranka, B. P., Zou, L., Chatham, J. C., & Darley-Usmar, V. M. (2009). Importance of the bioenergetic reserve capacity in response to cardiomyocyte stress induced by 4-hydroxynonenal. Biochemical Journal, 424, 99–107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Iliou, J. P., Thollon, C., Villeneuve, N., Robin, F., Cambarrat, C., Jacquemin, C., et al. (1995). Monohydroperoxidized fatty acids but not 4-hydroxynonenal induced acute cardiac cell damage. Free Radical Biology & Medicine, 19, 773–783.

    Article  CAS  Google Scholar 

  38. Hamad, I., Arda, N., Pekmez, M., Karaer, S., & Temizkan, G. (2010). Intracellular scavenging activity of Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) in the fission yeast, Schizosaccharomyces pombe. Journal of Natural Science, Biology, and Medicine, 1, 16–21.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Higgins, C. F. (1995). The ABC of channel regulation. Cell, 82, 693–696.

    Article  CAS  PubMed  Google Scholar 

  40. Obermayr, R. P., Schlüter, K. D., Schäfer, M., Spieckermann, P. G., & Piper, H. M. (1999). Protection of reoxygenated cardiomyocytes against sarcolemmal fragility: the role of glutathione. Pflugers Archiv. European Journal of Physiology, 438, 365–370.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Iffath Ghouri and Dr. Jose María Carvajal-González for their helpful discussion and critical reading of the manuscript. Technical and human support provided by Facility of Bioscience Applied Techniques (STAB) of Servicios de Apoyo a la Investigación (SAIUEx) (financed by Universidad de Extremadura, Junta de Extremadura, Ministerio de Ciencia e Innovación, Fondo Europeo de Desarrollo Regional-FEDER). This work was supported by a Grant from the Junta de Extremadura, Spain (PRI06A132 to F. Henao; GRU09056 and GRU10046 to Grupo de Investigación en Enfermedades Neurodegenerativas). M.P.H.-V. had been the recipient of predoctoral fellowships from the Junta de Extremadura (Spain). All Spanish funding is co-sponsored by the European Union FEDER (Fondo Europeo de Desarrollo Regional) program.

Conflict of interest

The authors declare that they have not conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Henao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1000 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hortigón-Vinagre, M.P., Henao, F. Apoptotic Cell Death in Cultured Cardiomyocytes Following Exposure to Low Concentrations of 4-Hydroxy-2-nonenal. Cardiovasc Toxicol 14, 275–287 (2014). https://doi.org/10.1007/s12012-014-9251-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-014-9251-5

Keywords

Navigation