Skip to main content

Advertisement

Log in

The Dual-Targeted HER1/HER2 Tyrosine Kinase Inhibitor Lapatinib Strongly Potentiates the Cardiac Myocyte-Damaging Effects of Doxorubicin

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The anticancer drug lapatinib (Tykerb) is a dual tyrosine kinase inhibitor targeting the HER2 (ERBB2) and EGFR (ERBB1, HER1) pathways that have been shown in clinical trials to display some cardiotoxicity. Because trastuzumab also targets HER2 receptors, the lapatinib/doxorubicin combination provides a good model to probe the mechanism of the increased cardiotoxicity caused by the concurrent use of trastuzumab and doxorubicin. Using a neonatal rat cardiac myocyte model, we have investigated the ability of lapatinib alone and in combination with doxorubicin to damage myocytes. Lapatinib treatment alone only slightly induced myocyte damage. However, doxorubicin-induced myocyte damage was greatly potentiated by the addition of nanomolar lapatinib concentrations. Lapatinib alone treatment decreased phosphorylated ERK (MAPK), which may have, in part, contributed to the increased myocyte damage. As measured by flow cytometry, lapatinib-treated myocytes displayed an increased accumulation of doxorubicin. As lapatinib is a strong inhibitor of several ATP-dependent ABC-type efflux transporters, this likely occurred because lapatinib blocked doxorubicin efflux, thereby increasing intracellular doxorubicin concentrations and, thus, increasing myocyte damage. These results suggest that the clinical use of concurrent doxorubicin and lapatinib should be approached with care due to the possibility of lapatinib increasing doxorubicin cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding-cassette

ACC:

Acetyl-Coenzyme A carboxylase

ACCα and ACCβ:

Alpha and beta isoforms of ACC

AKT:

v-akt murine thymoma viral oncogene homolog 1 kinase

AMPK:

AMP-activated protein kinase

DCF:

2′,7′-Dichlorofluorescin

DF-x :

Dulbecco’s modified eagle medium/Ham’s F-12 medium 1:1 where x is % (v/v) serum

ERK:

Extracellular signal-regulated kinase

K d :

Kinase-binding dissociation constant

LDH:

Lactate dehydrogenase

pACCα and pACCβ:

Phosphorylated alpha and beta isoforms of ACC

P-gp:

P-glycoprotein

PBS:

Dulbecco’s phosphate-buffered saline (pH 7.4)

λEx and λEm :

Excitation and emission wavelengths, respectively

References

  1. Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New England Journal of Medicine, 344, 783–792.

    Article  PubMed  CAS  Google Scholar 

  2. Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57, 727–741.

    Article  PubMed  CAS  Google Scholar 

  3. Gennari, A., & Pronzato, P. (2008). New understanding of the role of anthracyclines in early-stage breast cancer: Patient selection considerations. Clinical Breast Cancer, 8(Suppl 4), S179–S183.

    Article  PubMed  CAS  Google Scholar 

  4. Di Leo, A., Biganzoli, L., Claudino, W., Licitra, S., Pestrin, M., & Larsimont, D. (2008). Topoisomerase II alpha as a marker predicting anthracyclines’ activity in early breast cancer patients: Ready for the primetime? European Journal of Cancer, 44, 2791–2798.

    Article  PubMed  Google Scholar 

  5. Jarvinen, T. A., Tanner, M., Rantanen, V., Barlund, M., Borg, A., Grenman, S., et al. (2000). Amplification and deletion of topoisomerase IIα associate with ErbB-2 amplification and affect sensitivity to topoisomerase II inhibitor doxorubicin in breast cancer. American Journal of Pathology, 156, 839–847.

    Article  PubMed  CAS  Google Scholar 

  6. Pal, S. K., Childs, B. H., & Pegram, M. (2010). Emergence of nonanthracycline regimens in the adjuvant treatment of breast cancer. Breast Cancer Research and Treatment, 119, 25–32.

    Article  PubMed  CAS  Google Scholar 

  7. Fortune, J. M., & Osheroff, N. (2000). Topoisomerase II as a target for anticancer drugs: When enzymes stop being nice. Progress in Nucleic Acid Research and Molecular Biology, 64, 221–253.

    Article  PubMed  CAS  Google Scholar 

  8. Cheng, H., & Force, T. (2010). Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics. Circulation Research, 106, 21–34.

    Article  PubMed  CAS  Google Scholar 

  9. Perez, E. A., Koehler, M., Byrne, J., Preston, A. J., Rappold, E., & Ewer, M. S. (2008). Cardiac safety of lapatinib: Pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clinic Proceedings, 83, 679–686.

    PubMed  Google Scholar 

  10. Dang, C., Lin, N., Moy, B., Come, S., Sugarman, S., Morris, P., et al. (2010). Dose-dense doxorubicin and cyclophosphamide followed by weekly paclitaxel with trastuzumab and lapatinib in HER2/neu-overexpressed/amplified breast cancer is not feasible because of excessive diarrhea. Journal of Clinical Oncology, 28, 2982–2988.

    Article  PubMed  CAS  Google Scholar 

  11. Wonders, K. Y., Hydock, D. S., Greufe, S., Schneider, C. M., & Hayward, R. (2009). Endurance exercise training preserves cardiac function in rats receiving doxorubicin and the HER-2 inhibitor GW2974. Cancer Chemotherapy and Pharmacology, 64, 1105–1113.

    Article  PubMed  CAS  Google Scholar 

  12. Goukassian, D., Sasi, S., Lee, J., Budiu, D., Lawson, C., Maysky, et al. (2011). Concurrent administration of doxorubicin and lapatinib worsens doxorubicin-induced cardiac dysfunction in mice. In Proceedings of the American Association for Cancer Research, Abstract number 1209.

  13. Fedele, C., Riccio, G., Coppola, C., Barbieri, A., Monti, M. G., Arra, C., et al. (2012). Comparison of preclinical cardiotoxic effects of different ErbB2 inhibitors. Breast Cancer Research and Treatment, 133, 511–521.

    Article  PubMed  CAS  Google Scholar 

  14. Karaman, M. W., Herrgard, S., Treiber, D. K., Gallant, P., Atteridge, C. E., Campbell, B. T., et al. (2008). A quantitative analysis of kinase inhibitor selectivity. Nature Biotechnology, 26, 127–132.

    Article  PubMed  CAS  Google Scholar 

  15. Wiig, H., Gyenge, C. C., & Tenstad, O. (2005). The interstitial distribution of macromolecules in rat tumours is influenced by the negatively charged matrix components. Journal of Physiology, 567, 557–567.

    Article  PubMed  CAS  Google Scholar 

  16. Brozik, A., Hegedus, C., Erdei, Z., Hegedus, T., Ozvegy-Laczka, C., Szakacs, G., et al. (2011). Tyrosine kinase inhibitors as modulators of ATP binding cassette multidrug transporters: substrates, chemosensitizers or inducers of acquired multidrug resistance? Expert Opinion on Drug Metabolism and Toxicology, 7, 623–642.

    Article  PubMed  CAS  Google Scholar 

  17. Kuang, Y. H., Shen, T., Chen, X., Sodani, K., Hopper-Borge, E., Tiwari, A. K., et al. (2010). Lapatinib and erlotinib are potent reversal agents for MRP7 (ABCC10)-mediated multidrug resistance. Biochemical Pharmacology, 79, 154–161.

    Article  PubMed  CAS  Google Scholar 

  18. Hegedus, C., Szakacs, G., Homolya, L., Orban, T. I., Telbisz, A., Jani, M., et al. (2009). Ins and outs of the ABCG2 multidrug transporter: an update on in vitro functional assays. Advanced Drug Delivery Reviews, 61, 47–56.

    Article  PubMed  CAS  Google Scholar 

  19. Hasinoff, B. B., & Patel, D. (2010). The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro. Toxicology and Applied Pharmacology, 249, 132–139.

    Article  PubMed  CAS  Google Scholar 

  20. Hasinoff, B. B. (2010). The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity. Toxicology and Applied Pharmacology, 244, 190–195.

    Article  PubMed  CAS  Google Scholar 

  21. Burris, H. A., 3rd, Taylor, C. W., Jones, S. F., Koch, K. M., Versola, M. J., Arya, N., et al. (2009). A phase I and pharmacokinetic study of oral lapatinib administered once or twice daily in patients with solid malignancies. Clinical Cancer Research, 15, 6702–6708.

    Article  PubMed  CAS  Google Scholar 

  22. Schroeder, P. E., Patel, D., & Hasinoff, B. B. (2008). The dihydroorotase inhibitor 5-aminoorotic acid inhibits the metabolism in the rat of the cardioprotective drug dexrazoxane and its one-ring open metabolites. Drug Metabolism and Disposition, 36, 1780–1785.

    Article  PubMed  CAS  Google Scholar 

  23. Hasinoff, B. B., Patel, D., & Wu, X. (2007). The cytotoxicity of celecoxib towards cardiac myocytes is cyclooxygenase-2 independent. Cardiovascular Toxicology, 7, 19–27.

    Article  PubMed  CAS  Google Scholar 

  24. Hasinoff, B. B., Patel, D., & O’Hara, K. A. (2008). Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib. Molecular Pharmacology, 74, 1722–1728.

    Article  PubMed  CAS  Google Scholar 

  25. Hasinoff, B. B., & Patel, D. (2010). Mechanisms of myocyte cytotoxicity induced by the multikinase inhibitor sorafenib. Cardiovascular Toxicology, 10, 1–8.

    Article  PubMed  CAS  Google Scholar 

  26. Reers, M., Smiley, S. T., Mottola-Hartshorn, C., Chen, A., Lin, M., & Chen, L. B. (1995). Mitochondrial membrane potential monitored by JC-1 dye. Methods in Enzymology, 260, 406–417.

    Article  PubMed  CAS  Google Scholar 

  27. Hasinoff, B. B., Schnabl, K. L., Marusak, R. A., Patel, D., & Huebner, E. (2003). Dexrazoxane (ICRF-187) protects cardiac myocytes against doxorubicin by preventing damage to mitochondria. Cardiovascular Toxicology, 3, 89–99.

    Article  PubMed  CAS  Google Scholar 

  28. Adderley, S. R., & Fitzgerald, D. J. (1999). Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. Journal of Biological Chemistry, 274, 5038–5046.

    Article  PubMed  CAS  Google Scholar 

  29. Li, F., Wang, X., Capasso, J. M., & Gerdes, A. M. (1996). Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. Journal of Molecular and Cellular Cardiology, 28, 1737–1746.

    Article  PubMed  CAS  Google Scholar 

  30. Hasinoff, B. B., & Patel, D. (2009). The iron chelator Dp44mT does not protect myocytes against doxorubicin. Journal of Inorganic Biochemistry, 103, 1093–1101.

    Article  PubMed  CAS  Google Scholar 

  31. Hochster, H., Liebes, L., Wadler, S., Oratz, R., Wernz, J. C., Meyers, M., et al. (1992). Pharmacokinetics of the cardioprotector ADR-529 (ICRF-187) in escalating doses combined with fixed-dose doxorubicin. Journal of the National Cancer Institute, 84, 1725–1730.

    Article  PubMed  CAS  Google Scholar 

  32. Hasinoff, B. B., Patel, D., & Wu, X. (2003). The oral iron chelator ICL670A (deferasirox) does not protect myocytes against doxorubicin. Free Radical Biology & Medicine, 35, 1469–1479.

    Article  CAS  Google Scholar 

  33. Hasinoff, B. B., & Herman, E. H. (2007). Dexrazoxane: How it works in cardiac and tumor cells. Is it a prodrug or is it a drug? Cardiovascular Toxicology, 7, 140–144.

    Article  PubMed  CAS  Google Scholar 

  34. Wang, G. Q., Gong, Y., Burczynski, F. J., & Hasinoff, B. B. (2008). Cell lysis with dimethyl sulfoxide produces stable homogeneous solutions in the dichlorofluorescin oxidative stress assay. Free Radical Research, 42, 435–441.

    Article  PubMed  CAS  Google Scholar 

  35. Carloni, S., Fabbri, F., Brigliadori, G., Ulivi, P., Silvestrini, R., Amadori, D., et al. (2010). Tyrosine kinase inhibitors gefitinib, lapatinib and sorafenib induce rapid functional alterations in breast cancer cells. Current Cancer Drug Targets, 10, 422–431.

    Article  PubMed  CAS  Google Scholar 

  36. Spector, N. L., Yarden, Y., Smith, B., Lyass, L., Trusk, P., Pry, K., et al. (2007). Activation of AMP-activated protein kinase by human EGF receptor 2/EGF receptor tyrosine kinase inhibitor protects cardiac cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 10607–10612.

    Article  PubMed  CAS  Google Scholar 

  37. Shell, S. A., Lyass, L., Trusk, P. B., Pry, K. J., Wappel, R. L., & Bacus, S. S. (2008). Activation of AMPK is necessary for killing cancer cells and sparing cardiac cells. Cell Cycle, 7, 1769–1775.

    Article  PubMed  CAS  Google Scholar 

  38. Force, T., & Kolaja, K. L. (2011). Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nature Reviews Drug Discovery, 10, 111–126.

    Article  PubMed  CAS  Google Scholar 

  39. Force, T., Krause, D. S., & Van Etten, R. A. (2007). Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nature Reviews Cancer, 7, 332–344.

    Article  PubMed  CAS  Google Scholar 

  40. Wilhelm, S. M., Carter, C., Tang, L., Wilkie, D., McNabola, A., Rong, H., et al. (2004). BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Research, 64, 7099–7109.

    Article  PubMed  CAS  Google Scholar 

  41. Xia, W., Husain, I., Liu, L., Bacus, S., Saini, S., Spohn, J., et al. (2007). Lapatinib antitumor activity is not dependent upon phosphatase and tensin homologue deleted on chromosome 10 in ErbB2-overexpressing breast cancers. Cancer Research, 67, 1170–1175.

    Article  PubMed  CAS  Google Scholar 

  42. Lemmens, K., Doggen, K., & De Keulenaer, G. W. (2011). Activation of the neuregulin/ErbB system during physiological ventricular remodeling in pregnancy. American Journal of Physiology Heart and Circulatory Physiology, 300, H931–H942.

    Article  PubMed  CAS  Google Scholar 

  43. Polli, J. W., Olson, K. L., Chism, J. P., John-Williams, L. S., Yeager, R. L., Woodard, S. M., et al. (2009). An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethy l]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metabolism and Disposition, 37, 439–442.

    Article  PubMed  CAS  Google Scholar 

  44. Polli, J. W., Humphreys, J. E., Harmon, K. A., Castellino, S., O’Mara, M. J., Olson, K. L., et al. (2008). The role of efflux and uptake transporters in [N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethy l]amino}methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions. Drug Metabolism and Disposition, 36, 695–701.

    Article  PubMed  CAS  Google Scholar 

  45. Dai, C. L., Tiwari, A. K., Wu, C. P., Su, X. D., Wang, S. R., Liu, D. G., et al. (2008). Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Research, 68, 7905–7914.

    Article  PubMed  CAS  Google Scholar 

  46. Akimoto, H., Bruno, N. A., Slate, D. L., Billingham, M. E., Torti, S. V., & Torti, F. M. (1993). Effect of verapamil on doxorubicin cardiotoxicity: altered muscle gene expression in cultured neonatal rat cardiomyocytes. Cancer Research, 53, 4658–4664.

    PubMed  CAS  Google Scholar 

  47. Kwatra, D., Vadlapatla, R. K., Vadlapudi, A. D., Pal, D., & Mitra, A. K. (2010). Interaction of gatifloxacin with efflux transporters: a possible mechanism for drug resistance. International Journal of Pharmaceutics, 395, 114–121.

    Article  PubMed  CAS  Google Scholar 

  48. Weiss, J., Dormann, S. M., Martin-Facklam, M., Kerpen, C. J., Ketabi-Kiyanvash, N., & Haefeli, W. E. (2003). Inhibition of P-glycoprotein by newer antidepressants. Journal of Pharmacology and Experimental Therapeutics, 305, 197–204.

    Article  PubMed  CAS  Google Scholar 

  49. Crone, S. A., Zhao, Y. Y., Fan, L., Gu, Y., Minamisawa, S., Liu, Y., et al. (2002). ErbB2 is essential in the prevention of dilated cardiomyopathy. Nature Medicine, 8, 459–465.

    Article  PubMed  CAS  Google Scholar 

  50. Pentassuglia, L., Graf, M., Lane, H., Kuramochi, Y., Cote, G., Timolati, F., et al. (2009). Inhibition of ErbB2 by receptor tyrosine kinase inhibitors causes myofibrillar structural damage without cell death in adult rat cardiomyocytes. Experimental Cell Research, 315, 1302–1312.

    Article  PubMed  CAS  Google Scholar 

  51. Cvetkovic, R. S., & Scott, L. J. (2005). Dexrazoxane: a review of its use for cardioprotection during anthracycline chemotherapy. Drugs, 65, 1005–1024.

    Article  PubMed  CAS  Google Scholar 

  52. Miyamoto, S., Murphy, A. N., & Brown, J. H. (2009). Akt mediated mitochondrial protection in the heart: metabolic and survival pathways to the rescue. Journal of Bioenergetics and Biomembranes, 41, 169–180.

    Article  PubMed  CAS  Google Scholar 

  53. Kim, S. Y., Kim, H. P., Kim, Y. J., Oh do, Y., Im, S. A., et al. (2008). Trastuzumab inhibits the growth of human gastric cancer cell lines with HER2 amplification synergistically with cisplatin. International Journal of Oncology, 32, 89–95.

    PubMed  Google Scholar 

  54. Giacomini, K. M., Huang, S. M., Tweedie, D. J., Benet, L. Z., Brouwer, K. L., Chu, X., et al. (2010). Membrane transporters in drug development. Nature Reviews Drug Discovery, 9, 215–236.

    Article  PubMed  CAS  Google Scholar 

  55. Vannini, I., Zoli, W., Fabbri, F., Ulivi, P., Tesei, A., Carloni, S., et al. (2009). Role of efflux pump activity in lapatinib/caelyx combination in breast cancer cell lines. Anti-Cancer Drugs, 20, 918–925.

    Article  PubMed  CAS  Google Scholar 

  56. Estevez, M. D., Wolf, A., & Schramm, U. (2000). Effect of PSC 833, verapamil and amiodarone on adriamycin toxicity in cultured rat cardiomyocytes. Toxicology in Vitro, 14, 17–23.

    Article  PubMed  CAS  Google Scholar 

  57. McBride, B. F., Yang, T., Liu, K., Urban, T. J., Giacomini, K. M., Kim, R. B., et al. (2009). The organic cation transporter, OCTN1, expressed in the human heart, potentiates antagonism of the HERG potassium channel. Journal of Cardiovascular Pharmacology, 54, 63–71.

    Article  PubMed  CAS  Google Scholar 

  58. Solbach, T. F., Paulus, B., Weyand, M., Eschenhagen, T., Zolk, O., & Fromm, M. F. (2008). ATP-binding cassette transporters in human heart failure. Naunyn-Schmiedeberg’s Archives of Pharmacology, 377, 231–243.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a CIHR grant and a Canada Research Chair in Drug Development to Brian Hasinoff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian B. Hasinoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasinoff, B.B., Patel, D. & Wu, X. The Dual-Targeted HER1/HER2 Tyrosine Kinase Inhibitor Lapatinib Strongly Potentiates the Cardiac Myocyte-Damaging Effects of Doxorubicin. Cardiovasc Toxicol 13, 33–47 (2013). https://doi.org/10.1007/s12012-012-9183-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-012-9183-x

Keywords

Navigation