Skip to main content

Advertisement

Log in

Experimental Research Showing the Reduction of Naloxone-Place Aversion by Oral Zinc Administration in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Previous studies showed the attenuation of both morphine-dependence and morphine-place preference by zinc. Conditioned place preference and aversion are experimental models frequently used to test the reward-stimulating, respectively the aversive effects induced by different stimuli or substances. Addictive substances usually induce place preference (exhibit reward-stimulating properties), while their antagonists determine place-avoidance (aversion). The present study aimed to assess the effect determined by zinc sulphate oral administration (2 and 4 mg/kg/day, 14 days, prior to habituation) on the place aversion induced by two naloxone doses (1.5 and 2.5 mg/kg/administration). The results show a robust, dose-dependent reduction of the aversion determined by both naloxone doses (the aversion induced by 1.5 mg/kg naloxone was reduced with 15%—the lower zinc dose and with 24%—the higher zinc dose; the aversion induced by 2.5 mg/kg naloxone was reduced with 16%—the lower zinc dose and with 29%—the higher zinc dose). This represents a new proof of the interactions between zinc and opioidergic system and a further argument for dietary zinc supplementation in patients on opioids for cancer-related chronic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46

    Article  CAS  PubMed  Google Scholar 

  2. Osredkar J, Sustar N (2011) Copper and zinc, biological role and significance of copper/zinc imbalance. J Clinic Toxicol S 3:1–18

    Google Scholar 

  3. Dhawan DK, Chadha VD (2010) Zinc: a promising agent in dietary chemoprevention of cancer. Indian J Med Res 132:676–682

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Livingstone C (2015) Zinc: physiology, deficiency, and parenteral nutrition. Nutr Clin Pract 30(3):371–382

    Article  CAS  PubMed  Google Scholar 

  5. Bonaventura P, Benedetti G, Fand A, Miossec P (2015) Zinc and its role in immunity and inflammation. Autoimmun Rev 14:277–285

    Article  CAS  PubMed  Google Scholar 

  6. Ciubotariu D, Ghiciuc CM, Lupușoru CE (2015a) Zinc involvement in opioid addiction and analgesia—should zinc supplementation be recommended for opioid-treated persons? Subst Abuse Treat Prev Policy 10:29

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ciubotariu D, Nechifor M (2007) Zinc involvements in the brain. Rev Med Chir Soc Med Nat 111:981–985

    Google Scholar 

  8. Ciubotariu D, Pascu Baican M, Nechifor M, Tartau L (2012) P.1.c.010 zinc does not affect morphine analgesia in morphine-dependent rats. European Neurospsychopharmacol 22(Suppl. 2):S172

    Article  Google Scholar 

  9. Larson AA, Kovács KJ, Spartz AK (2000) Intrathecal Zn2+ attenuates morphine antinociception and the development of acute tolerance. Eur J Pharmacol 407:267–272

    Article  CAS  PubMed  Google Scholar 

  10. Chelărescu D, Filip C, Ghiciuc C, Cuciureanu M, Chelărescu O (2011) P.6.d.019 zinc modulates morphine-induced behavioural sensitisation. European Neurospsychopharmacol 21(Suppl. 3):S593

    Article  Google Scholar 

  11. Connor MA, Chavkin C (1992) Ionic zinc may function as an endogenous ligand for the haloperidol-sensitive sigma 2 receptor in rat brain. Mol Pharmacol 42:471–479

    CAS  PubMed  Google Scholar 

  12. Hanissian SH, Tejwani GA (1988) Histidine abolishes the inhibition by zinc of naloxone binding to opioid receptors in rat brain. Neuropharmacology 27:1145–1149

    Article  CAS  PubMed  Google Scholar 

  13. Stengaard-Pedersen K (1982) Inhibition of enkephalin binding to opiate receptors by zinc ions: possible physiological importance in the brain. Acta Pharmacol Toxicol (Copenh) 50:213–220

    Article  CAS  Google Scholar 

  14. Tejwani GA, Hanissian SH (1990) Modulation of mu, delta and kappa opioid receptors in rat brain by metal ions and histidine. Neuropharmacology 29950:445–452

    Article  Google Scholar 

  15. Ogawa N, Mizuno S, Fukushima M, Mori A (1985) Effects of guanine nucleotides, transition metals and temperature on enkephalin receptors of rat brain membranes. Peptides 6(Suppl 1):23–28

    Article  CAS  PubMed  Google Scholar 

  16. Essatara MB, Morley JE, Levine AS, Elson MK, Shafer RB, McClain CJ (1984) The role of the endogenous opiates in zinc deficiency anorexia. Physiol Behav 32:475–478

    Article  CAS  PubMed  Google Scholar 

  17. Fregoneze JB, Luz CP, Castro L, Oliveira P, Lima AK, Souza F, Maldonado I, Macêdo DF, Ferreira MG, Bandeira IP, Rocha MA Jr, Carvalho FL, De-Castro-e-Silva E (1999) Zinc and water intake in rats: investigation of adrenergic and opiatergic central mechanisms. Braz J Med Biol Res 32:1217–1222

    Article  CAS  PubMed  Google Scholar 

  18. Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology 153:31–43

    Article  CAS  PubMed  Google Scholar 

  19. Zarrindast MR, Bahreini T, Adl M (2002) Effect of imipramine on the expression and acquisition of morphine-induced conditioned place preference in mice. Pharmacol Biochem Behav 73:941–949

    Article  CAS  PubMed  Google Scholar 

  20. Tenk CM, Kavaliers M, Ossenkopp KP (2006) The effects of acute corticosterone on lithium chloride-induced conditioned place aversion and locomotor activity in rats. Life Sci 79:1069–1080

    Article  CAS  PubMed  Google Scholar 

  21. Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24:97–129

    Article  CAS  PubMed  Google Scholar 

  22. Shirayama Y, Chaki S (2006) Neurochemistry of the nucleus accumbens and its relevance to depression and antidepressant action in rodents. Curr Neuropharmacol 4:277–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brischoux F, Chakraborty S, Brierley DI, Ungless MA (2009) Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci U S A 106:4894–4899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stamatakis AM, Stuber GD (2012) Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat Neurosci 15:1105–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van der Kooy D, Mucha RF, O'Shaughnessy M, Bucenieks P (1982) Reinforcing effects of brain microinjections of morphine revealed by conditioned place preference. Brain Res 243:107–117

    Article  PubMed  Google Scholar 

  26. Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285

    Article  CAS  PubMed  Google Scholar 

  27. Bohn LM, Gainetdinov RR, Sotnikova TD, Medvedev IO, Lefkowitz RJ, Dykstra LA, Caron MG (2003) Enhanced rewarding properties of morphine, but not cocaine, in beta(arrestin)-2 knock-out mice. J Neurosci 23:10265–10273

    CAS  PubMed  Google Scholar 

  28. Kawasaki Y, Araki H, Suemaru K, Kitamura Y, Gomita Y, Sendo T (2011) Involvement of dopaminergic receptor signaling in the effects of glutamatergic receptor antagonists on conditioned place aversion induced by naloxone in single-dose morphine-treated rats. J Pharmaco Sci 117:27–33

    Article  CAS  Google Scholar 

  29. van der Kooy D, Swerdlow NR, Koob GF (1983) Paradoxical reinforcing properties of apomorphine: effects of nucleus accumbens and area postrema lesions. Brain Res 259:11–118

    Article  Google Scholar 

  30. Bueters TJ, Joosen MJ, van Helden HP, Ijzerman AP, Danhof M (2003) Adenosine A1 receptor agonist N6-cyclopentyladenosine affects the inactivation of acetylcholinesterase in blood and brain by sarin. J Pharmacol Exp Ther 304:1307–1313

    Article  CAS  PubMed  Google Scholar 

  31. Qiu J, Zhang C, Borgquist A, Nestor CC, Smith AW, Bosch MA, Ku S, Wagner EJ, Rønnekleiv OK, Kelly MJ (2014) Insulin excites anorexigenic proopiomelanocortin neurons via activation of canonical transient receptor potential channels. Cell Metab 19:682–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pfaender S, Grabrucker AM (2014) Characterization of biometal profiles in neurological disorders. Metallomics 6:960–977

    Article  CAS  PubMed  Google Scholar 

  33. Prasad AS (2013) Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr 4:176–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alexa T, Marza A, Voloseniuc T, Tamba B (2015) Enhanced analgesic effects of tramadol and common trace element coadministration in mice. J Neurosci Res 93:1534–1541

    Article  CAS  PubMed  Google Scholar 

  35. Kesmati M, Torabi M (2014) Interaction between analgesic effect of nano and conventional size of zinc oxide and opioidergic system activity in animal model of acute pain. Basic Clin Neurosci 5:80–87

    PubMed  PubMed Central  Google Scholar 

  36. Larson AA, Kitto KF (1999) Chelation of zinc in the extracellular area of the spinal cord, using ethylenediaminetetraacetic acid disodium-calcium salt or dipicolinic acid, inhibits the antinociceptive effect of capsaicin in adult mice. J Pharmacol Exp Ther 288:759–765

    CAS  PubMed  Google Scholar 

  37. Liu T, Walker JS, Tracey DJ (1999) Zinc alleviates thermal hyperalgesia due to partial nerve injury. Neuroreport 10:645–649

    Article  CAS  PubMed  Google Scholar 

  38. Matsunami M, Kirishi S, Okui T, Kawabata A (2011) Chelating luminal zinc mimics hydrogen sulfide-evoked colonic pain in mice: possible involvement of T-type calcium channels. Neuroscience 181:257–264

    Article  CAS  PubMed  Google Scholar 

  39. Nozaki C, Vergnano AM, Filliol D, Ouagazzal AM, Le Goff A, Carvalho S, Reiss D, Gaveriaux-Ruff C, Neyton J, Paoletti P, Kieffer BL (2011) Zinc alleviates pain through high-affinity binding to the NMDA receptor NR2A subunit. Nat Neurosci 14:1017–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tamba BI, Leon MM, Petreus T (2013) Common trace elements alleviate pain in an experimental mouse model. J Neurosci Res 91:554–561

    Article  CAS  PubMed  Google Scholar 

  41. Gulya K, Kovács GL, Kása P (1991) Partial depletion of endogenous zinc level by (D-Pen2, D-Pen5)enkephalin in the rat brain. Life Sci 48:PL57–PL62

    Article  CAS  PubMed  Google Scholar 

  42. Freisinger E, Vašák M (2013) Cadmium in metallothioneins. Met Ions Life Sci 11:339–371

    Article  CAS  PubMed  Google Scholar 

  43. Hidalgo J, Giralt M, Garvey JS, Armario A (1991) Effect of morphine administration on rat liver metallothionein and zinc metabolism. J Pharmacol Exp Ther 259:274–278

    CAS  PubMed  Google Scholar 

  44. Ciubotariu D, Ghiciuc CM, Lupușoru RV, Bibire N, Agoroaei L, Lupușoru CE (2015b) Experimental research showing the beneficial effect of oral zinc administration in opioid tolerance. Farmacia 63:835–839

    CAS  Google Scholar 

  45. Elnimr T, Hashem A, Assar R (1996) Heroin dependence effects on some major and trace elements. Biol Trace Elem Res 54:153–162

    Article  CAS  PubMed  Google Scholar 

  46. Potkin SG, Shore D, Torrey EF, Weinberger DR, Gillin JC, Henkin RI, Agarwal RP, Wyatt RJ (1982) Cerebrospinal fluid zinc concentrations in ex-heroin addicts and patients with schizophrenia: some preliminary observations. Biol Psychiatry 17:1315–1322

    CAS  PubMed  Google Scholar 

  47. Ruiz Martínez M, Gil Extremera B, Maldonado Martín A, Cantero-Hinojosa J, Moreno-Abadía V (1990) Trace elements in drug addicts. Klin Wochenschr 68:507–511

    Article  PubMed  Google Scholar 

  48. Sadlik J, Pach J, Winnik L, Piekoszewski W (2000) Concentration of zinc, copper and magnesium in the serum of drug addicts. Przegl Lek 57:563–564

    CAS  PubMed  Google Scholar 

  49. Floriańczyk B (2000) Zinc level in selected tissues of ethanol and morphine intoxicated mice. Med Sci Monit 6:680–683

    PubMed  Google Scholar 

  50. Cuajungco MP, Lees GJ (1997) Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis 4:137–169

    Article  CAS  PubMed  Google Scholar 

  51. Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51:225–257

    CAS  PubMed  Google Scholar 

  52. Dursun N, Erenmemisoglu A, Suer C, Gogusten B (1995) The effect of zinc deficiency on morphine antinociception. Research and Communication in Alcohol and Substance Abuse 16:47–52

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Ciubotariu.

Ethics declarations

The study protocols were approved by the institution’s Ethics Committee of Research (“Gr. T. Popa” University of Medicine and Pharmacy from Iași, Romania). All animal procedures were performed in accordance with the European Union law on the care and use of animals for scientific purposes and with the Helsinki Declaration recommendations.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciubotariu, D., Lupușoru, R.V., Luca, E. et al. Experimental Research Showing the Reduction of Naloxone-Place Aversion by Oral Zinc Administration in Rats. Biol Trace Elem Res 180, 127–134 (2017). https://doi.org/10.1007/s12011-017-0995-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-0995-1

Keywords

Navigation