Skip to main content
Log in

The Effects of Agaricus blazei Murill Polysaccharides on Cadmium-Induced Apoptosis and the TLR4 Signaling Pathway of Peripheral Blood Lymphocytes in Chicken

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this study, we investigated the effects of Agaricus blazei Murill polysaccharides (ABP) on cadmium (Cd)-induced apoptosis and the TLR4 signaling pathway of chicken peripheral blood lymphocytes (PBLs). Seven-day-old healthy chickens were randomly divided into four groups, and each group contained 20 males. The cadmium-supplemented diet group (Cd group) was fed daily with full feed that contained 140 mg cadmium chloride (CdCl2)/kg and 0.2 mL saline. The A. blazei Murill polysaccharide diet group (ABP group) was fed daily with full feed with 0.2 mL ABP solution (30 mg/mL) by oral gavage. The cadmium-supplemented plus A. blazei Murill polysaccharide diet group (Cd + ABP group) was fed daily with full feed containing 140 mg CdCl2/kg and 0.2 mL ABP solution (30 mg/mL) by gavage. The control group was fed daily with full feed with 0.2 mL saline per day. We measured the apoptosis rate and messenger RNA (mRNA) levels of apoptosis genes (caspase-3, Bax, and Bcl-2), the mRNA levels of TLR4 and TLR4 signaling pathway-related factors (MyD88, TRIF, NF-κB, and IRF3), the TLR4 protein expression, and the concentrations of inflammatory cytokines (IL-1β, IL-6, and TNF-α) in chicken PBLs. The results showed that the PBL apoptosis rate was significantly increased, the mRNA levels of caspase-3 and Bax were significantly increased, while that of Bcl-2 was significantly reduced. The Bax/Bcl-2 ratio was significantly increased in the Cd group at 20, 40, and 60 days after treatment compared with that in the control group. After treatment with ABP, the above changes were clearly suppressed. At the same time, ABP reduced the concentrations of IL-1β, IL-6, and TNF-α induced by Cd. We also found that ABP inhibited the TLR4 mRNA level and protein expression and inhibited the mRNA levels of MyD88, TRIF, NF-κB, and IRF3. The results demonstrated that Cd could induce apoptosis, activate the TLR4 signaling pathway, and induce the expression of inflammatory cytokines in chicken PBLs, and that the administration of ABP clearly inhibited Cd-induced effects on chicken PBLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72

    Article  PubMed  PubMed Central  Google Scholar 

  2. Satofuka H, Amano S, Atomi H et al (1999) Rapid method for detection and detoxification of heavy metal ions in water environments using phytochelation. J Biosci Bioeng 88:287–292

    Article  CAS  PubMed  Google Scholar 

  3. Angle CR, Thomas DJ, Swanson SA (1993) Osteotoxicity of cadmium and lead in HOS TE 85 and ROS 17/2.8 cells: relation to metallothionein induction and mitochondrial binding. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine 6:179–184

    Article  CAS  Google Scholar 

  4. Chen X, Zhu GY, Jin TY et al (2012) Cadmium stimulates the osteoclastic differentiation of RAW264.7 cells in presence of osteoblasts. Biol Trace Elem Res 146:349–353

    Article  CAS  PubMed  Google Scholar 

  5. Angenard G, Muczynski V, Coffigny H et al (2010) Cadmium increases human fetal germ cell apoptosis. Environ Health Persp 118:331–337

    Article  CAS  Google Scholar 

  6. Wang L, Wang H, Li J, Chen D, Liu Z (2011) Simultaneous effects of lead and cadmium on primary cultures of rat proximal tubular cells: interaction of apoptosis and oxidative stress. Arch Environ Contam Toxicol 61:500–511

    Article  CAS  PubMed  Google Scholar 

  7. Mao WP, Ye JL, Guan ZB et al (2007) Cadmium induces apoptosis in human embryonic kidney (HEK) 293 cells by caspase-dependent and -independent pathways acting on mitochondria. Toxicol in Vitro 21:343–354

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Zhang Z, Fu H et al (2015) Structural and evolutionary characteristics of fish-specific TLR19. Fish & shellfish immunology 47:271–279

    Article  CAS  Google Scholar 

  9. Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 28:886–892

    Article  CAS  PubMed  Google Scholar 

  10. Iqbal M, Philbin VJ, Smith AL (2005) Expression patterns of chicken Toll-like receptor mRNA in tissues, immune cell subsets and cell lines. Vet Immunol Immunop 104:117–127

    Article  CAS  Google Scholar 

  11. Williams DL, Ozment-Skelton T, Li CF (2006) Modulation of the phosphoinositide 3-kinase signaling pathway alters host response to sepsis, inflammation, and ischemia/reperfusion injury. Shock 25:432–439

    Article  CAS  PubMed  Google Scholar 

  12. Yoon YD, Han SB, Kang JS et al (2003) Toll-like receptor 4-dependent activation of macrophages by polysaccharide isolated from the radix of Platycodon grandiflorum. Int Immunopharmacol 3:1873–1882

    Article  CAS  PubMed  Google Scholar 

  13. Ghosh M, Subramani J, Rahman M, Shapiro L (2015) CD13 restricts TLR4 endocytic signal transduction in inflammation. J Immunol 194

  14. McGuire K, Jones M, Werling D et al (2006) Radiation hybrid mapping of all 10 characterized bovine Toll-like receptors. Anim Genet 37:47–50

    Article  CAS  PubMed  Google Scholar 

  15. Park HJ, Hong JH, Kwon HJ et al (2010) TLR4-mediated activation of mouse macrophages by Korean mistletoe lectin-C (KML-C). Biochem Bioph Res Co 396:721–725

    Article  CAS  Google Scholar 

  16. del Pozo O, Pedley KF, Martin GB (2004) MAPKKK alpha is a positive regulator of cell death associated with both plant immunity and disease. EMBO J 23:3072–3082

    Article  PubMed  PubMed Central  Google Scholar 

  17. Oblak A, Pohar J, Jerala R (2015) MD-2 determinants of nickel and cobalt-mediated activation of human TLR4. PLoS One 10:e0120583

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pufnock JS, Cigal M, Rolczynski LS et al (2011) Priming CD8(+) T cells with dendritic cells matured using TLR4 and TLR7/8 ligands together enhances generation of CD8(+) T cells retaining CD28. Blood 117:6542–6551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roediger B, Weninger W (2011) How nickel turns on innate immune cells. Immunol Cell Biol 89:1–2

    Article  PubMed  Google Scholar 

  20. Firenzuoli F, Gori L, Lombardo G (2008) The medicinal mushroom Agaricus blazei Murrill: review of literature and pharmaco-toxicological problems. Evid-Based Compl Alt 5:3–15

    Article  CAS  Google Scholar 

  21. Val CH, Brant F, Miranda AS et al (2015) Effect of mushroom Agaricus blazei on immune response and development of experimental cerebral malaria. Malaria J 14

  22. Ferreira ICFR, Barros L, Abreu RMV (2009) Antioxidants in wild mushrooms. Curr Med Chem 16:1543–1560

    Article  CAS  PubMed  Google Scholar 

  23. Chen L, Shao HJ, Su YB (2004) Coimmunization of Agaricus blazei Murill extract with hepatitis B virus core protein through DNA vaccine enhances cellular and humoral immune responses. Int Immunopharmacol 4:403–409

    Article  CAS  PubMed  Google Scholar 

  24. Kimura Y, Kido T, Takaku T, Sumiyoshi M, Baba K (2004) Isolation of an anti-angiogenic substance from Agaricus blazei Murill: its antitumor and antimetastatic actions. Cancer Sci 95:758–764

    Article  CAS  PubMed  Google Scholar 

  25. Dabrio M, Rodriguez AR, Bordin G et al (2002) Recent developments in quantification methods for metallothionein. J Inorg Biochem 88:123–134

    Article  CAS  PubMed  Google Scholar 

  26. Toriumi S, Saito T, Hosokawa T et al (2005) Metal binding ability of metallothionein-3 expressed in Escherichia coli. Basic Clin Pharmacol 96:295–301

    Article  CAS  Google Scholar 

  27. Radtke F, Heuchel R, Georgiev O et al (1993) Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter. EMBO J 12:1355–1362

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang DK, Zhang GL, Hayden MS et al (2004) A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303:1522–1526

    Article  CAS  PubMed  Google Scholar 

  29. Lauw FN, Caffrey DR, Golenbock DT (2005) Of mice and man: TLR11 (finally) finds profilin. Trends Immunol 26:509–511

    Article  CAS  PubMed  Google Scholar 

  30. Qun YU (2014) Chicken Toll-like receptor 4 involvement in APS regulation of chicken intestinal immune function. Dissertation of Northeast Agricultural University

  31. Alshatwi AA, Hasan TN, Alqahtani AM et al (2014) Delineating the anti-cytotoxic and anti-genotoxic potentials of catechin hydrate against cadmium toxicity in human peripheral blood lymphocytes. Environ Toxicol Phar 38:653–662

    Article  CAS  Google Scholar 

  32. Lin Z, Liao W, Ren J (2016) Physicochemical characterization of a polysaccharide fraction from Platycladus orientalis (L.) Franco and its macrophage immunomodulatory and anti-hepatitis B virus activities. J Agric Food Chem 64:5813–5823

    Article  CAS  PubMed  Google Scholar 

  33. Xu S, Zhang Y, Jiang K (2016) Antioxidant activity in vitro and in vivo of the polysaccharides from different varieties of Auricularia auricula. Food Funct 7:3868–3879

    Article  CAS  PubMed  Google Scholar 

  34. Baharara J, Amini E (2015) The potential of brittle star extracted polysaccharide in promoting apoptosis via intrinsic signaling pathway. Avicenna journal of medical biotechnology 7:151–158

    PubMed  PubMed Central  Google Scholar 

  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  36. Lu H, Jin TY, Nordberg G, Nordberg M (2005) Metallothionein gene expression in peripheral lymphocytes and renal dysfunction in a population environmentally exposed to cadmium. Toxicol Appl Pharm 206:150–156

    Article  CAS  Google Scholar 

  37. Zhao HY, Liu W, Wang Y et al (2015) Cadmium induces apoptosis in primary rat osteoblasts through caspase and mitogen-activated protein kinase pathways. J Vet Sci 16:297–306

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bertin G, Averbeck D (2006) Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 88:1549–1559

    Article  CAS  PubMed  Google Scholar 

  39. Liu J, Kadiiska MB, Corton JC et al (2002) Acute cadmium exposure induces stress-related gene expression in wild-type and metallothionein-I/II-null mice. Free Radic Biol Med 32:525–535

    Article  CAS  PubMed  Google Scholar 

  40. Shen CL, Song W, Pence BC (2001) Interactions of selenium compounds with other antioxidants in DNA damage and apoptosis in human normal keratinocytes. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 10:385–390

    CAS  Google Scholar 

  41. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yiran Z, Chenyang J, Jiajing W et al (2013) Oxidative stress and mitogen-activated protein kinase pathways involved in cadmium-induced BRL 3A cell apoptosis. Oxidative Med Cell Longev 2013:516051

    Article  Google Scholar 

  43. Cui ZG, Ogawa R, Piao JL et al (2011) Molecular mechanisms involved in the adaptive response to cadmium-induced apoptosis in human myelomonocytic lymphoma U937 cells. Toxicol in Vitro 25:1687–1693

    Article  CAS  PubMed  Google Scholar 

  44. Miguel BG, Rodriguez ME, Aller P, Martinez AM, Mata F (2005) Regulation of cadmium-induced apoptosis by PKCdelta in U937 human promonocytic cells. Biochim Biophys Acta 1743:215–222

    Article  CAS  PubMed  Google Scholar 

  45. Pulido MD, Parrish AR (2003) Metal-induced apoptosis: mechanisms. Mutat Res 533:227–241

    Article  CAS  PubMed  Google Scholar 

  46. Ye JL, Mao WP, Wu AL et al (2007) Cadmium-induced apoptosis in human normal liver L-02 cells by acting on mitochondria and regulating Ca(2+) signals. Environ Toxicol Pharmacol 24:45–54

    Article  PubMed  Google Scholar 

  47. Ola MS, Nawaz M, Ahsan H (2011) Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem 351:41–58

    Article  CAS  PubMed  Google Scholar 

  48. Lee WK, Bork U, Gholamrezaei F, Thevenod F (2005) Cd(2+)-induced cytochrome c release in apoptotic proximal tubule cells: role of mitochondrial permeability transition pore and Ca(2+) uniporter. American journal of physiology Renal physiology 288:F27–F39

    Article  CAS  PubMed  Google Scholar 

  49. Oh SH, Lee BH, Lim SC (2004) Cadmium induces apoptotic cell death in WI 38 cells via caspase-dependent Bid cleavage and calpain-mediated mitochondrial Bax cleavage by Bcl-2-independent pathway. Biochem Pharmacol 68:1845–1855

    Article  CAS  PubMed  Google Scholar 

  50. Sun XM, MacFarlane M, Zhuang J et al (1999) Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J Biol Chem 274:5053–5060

    Article  CAS  PubMed  Google Scholar 

  51. Sirchia R, Longo A, Luparello C (2008) Cadmium regulation of apoptotic and stress response genes in tumoral and immortalized epithelial cells of the human breast. Biochimie 90:1578–1590

    Article  CAS  PubMed  Google Scholar 

  52. Chang KC, Hsu CC, Liu SH et al (2013) Cadmium induces apoptosis in pancreatic beta-cells through a mitochondria-dependent pathway: the role of oxidative stress-mediated c-Jun N-terminal kinase activation. Plos One:8

  53. Song XB, Liu G, Wang ZY, Wang L (2016) Puerarin protects against cadmium-induced proximal tubular cell apoptosis by restoring mitochondrial function. Chem Biol Interact 260:219–231

    Article  CAS  PubMed  Google Scholar 

  54. Wang L, Lin S, Li Z, Yang D, Wang Z (2013) Protective effects of puerarin on experimental chronic lead nephrotoxicity in immature female rats. Human & experimental toxicology 32:172–185

    Article  CAS  Google Scholar 

  55. Wang L, Lin SQ, He YL, Liu G, Wang ZY (2013) Protective effects of quercetin on cadmium-induced cytotoxicity in primary cultures of rat proximal tubular cells. Biomed Environ Sci 26:258–267

    PubMed  Google Scholar 

  56. Jin CY, Moon DO, Choi YH, Lee JD, Kim GY (2007) Bcl-2 and caspase-3 are major regulators in Agaricus blazei-induced human leukemic U937 cell apoptosis through dephoshorylation of Akt. Biol Pharm Bull 30:1432–1437

    Article  CAS  PubMed  Google Scholar 

  57. Fang H, Wang PF, Zhou Y, Wang YC, Yang QW (2013) Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury. J Neuroinflammation 10:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yamamoto M, Sato S, Hemmi H et al (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301:640–643

    Article  CAS  PubMed  Google Scholar 

  59. Picard C, Puel A, Bonnet M et al (2003) Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299:2076–2079

    Article  CAS  PubMed  Google Scholar 

  60. Uematsu S, Akira S (2007) Toll-like receptors and type I interferons. J Biol Chem 282:15319–15323

    Article  CAS  PubMed  Google Scholar 

  61. James ML, Sullivan PM, Lascola CD, Vitek MP, Laskowitz DT (2009) Pharmacogenomic effects of apolipoprotein E on intracerebral hemorrhage. Stroke 40:632–639

    Article  CAS  PubMed  Google Scholar 

  62. Zhang L, Shu XJ, Zhou HY et al (2009) Protective effect of granulocyte colony-stimulating factor on intracerebral hemorrhage in rat. Neurochem Res 34:1317–1323

    Article  PubMed  Google Scholar 

  63. Cao CX, Yang QW, Lv FL et al (2007) Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. Biochem Biophys Res Commun 353:509–514

    Article  CAS  PubMed  Google Scholar 

  64. Yang Y (2011) The study on the bidirectional immunomodulatory effects of Ganoderma applanatum polysaccharides. Dissertation of Jilin Agricultural University

  65. Han KJ, Su X, Xu LG et al (2004) Mechanisms of the TRIF-induced interferon-stimulated response element and NF-kappaB activation and apoptosis pathways. J Biol Chem 279:15652–15661

    Article  CAS  PubMed  Google Scholar 

  66. Marth E, Jelovcan S, Kleinhappl B, Gutschi A, Barth S (2001) The effect of heavy metals on the immune system at low concentrations. Int J Occup Med Environ Health 14:375–386

    CAS  PubMed  Google Scholar 

  67. Freitas M, Fernandes E (2011) Zinc, cadmium and nickel increase the activation of NF-kappaB and the release of cytokines from THP-1 monocytic cells. Metallomics: integrated biometal science 3:1238–1243

    Article  CAS  Google Scholar 

  68. Nakae S, Komiyama Y, Yokoyama H et al (2003) IL-1 is required for allergen-specific T(h)2 cell activation and the development of airway hypersensitivity response. Int Immunol 15:483–490

    Article  CAS  PubMed  Google Scholar 

  69. Grivennikov S, Karin M (2008) Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell 13:7–9

    Article  CAS  PubMed  Google Scholar 

  70. Park SS, Lillehoj HS, Allen PC et al (2008) Immunopathology and cytokine responses in broiler chickens coinfected with Eimeria maxima and Clostridium perfringens with the use of an animal model of necrotic enteritis. Avian Dis 52:14–22

    Article  PubMed  Google Scholar 

  71. Xu FP, Liu S, Li S (2015) Effects of selenium and cadmium on changes in the gene expression of immune cytokines in chicken splenic lymphocytes. Biol Trace Elem Res 165:214–221

    Article  CAS  PubMed  Google Scholar 

  72. Yan LI, Ming LI, Jian Ting LI, Chen W-Q et al (2009) Baicalin attenuates toll-like receptor 4 expression in lipopolysaccharide-treated macrophage cells. Chinese journal of hardening of the arteries 12:985–988

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Grant No. 31272533). We thank the members of the Traditional Chinese Veterinary Medicine Laboratory and Veterinary Pathology Laboratory in the College of Veterinary Medicine, Northeast Agricultural University. All authors have read the manuscript and agreed to submit it in its current form for consideration for publication in the Journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruili Zhang.

Ethics declarations

All procedures in this study have been approved by the Institutional Animal Care and Use Committee of Northeast Agricultural University in China.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Wenjing Liu and Ming Ge contributed equally to this work and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Ge, M., Hu, X. et al. The Effects of Agaricus blazei Murill Polysaccharides on Cadmium-Induced Apoptosis and the TLR4 Signaling Pathway of Peripheral Blood Lymphocytes in Chicken. Biol Trace Elem Res 180, 153–163 (2017). https://doi.org/10.1007/s12011-017-0969-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-0969-3

Keywords

Navigation