Skip to main content
Log in

Oxidative Stress and Genotoxicity of Zinc Oxide Nanoparticles to Pseudomonas Species, Human Promyelocytic Leukemic (HL-60), and Blood Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In the present study, toxicity of commercial zinc oxide nanoparticles (ZnO NPs) was studied on the bacterium Pseudomonas sp., human promyelocytic leukemia (HL-60) cells, and peripheral blood mononuclear cells (PBMC). The toxicity was assessed by measuring growth, cell viability, and protein expression in bacterial cell. The bacterial growth and viability decreased with increasing concentrations of ZnO NP. Three major proteins, ribosomal protein L1 and L9 along with alkyl hydroperoxides reductase, were upregulated by 1.5-, 1.7-, and 2.0-fold, respectively, after ZnO NP exposure. The results indicated oxidative stress as the leading cause of toxic effect in bacteria. In HL-60 cells, cytotoxic and genotoxic effects along with antioxidant enzyme activity and reactive oxygen species (ROS) generation were studied upon ZnO NP treatment. ZnO NP exhibited dose-dependent increase in cell death after 24-h exposure. The DNA-damaging potential of ZnO NP in HL-60 cells was maximum at 0.05 mg/L concentration. Comet assay showed 70–80% increase in tail DNA at 0.025 to 0.05 mg/L ZnO NP concentration. A significant increase of 1.6-, 1.4-, and 2.0-fold in ROS level was observed after 12 h. Genotoxic potential of ZnO NPs was also demonstrated in PBMC through DNA fragmentation. Thus, ZnO NP, besides being an essential element having antibacterial activity, also showed toxicity towards human cells (HL-60 and PBMC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schilling K, Bradford B, Castelli D, Dufour E, Nash JF, Pape W, Schulte S, Tooley I, van den Bosch J, Schellauf F (2010) Human safety review of “nano” titanium dioxide and zinc oxide. Photochem Photobiol Sci 9:495–509

    Article  CAS  PubMed  Google Scholar 

  2. Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7:1063–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tankhiwale R, Bajpai SK (2012) Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging. Colloids Surf B Bioint 90:16–20

    Article  CAS  Google Scholar 

  4. Musee N, Thwala M, Nota N (2011) The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. J Environ Monit 13:1164–1183

    Article  CAS  PubMed  Google Scholar 

  5. Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci App 4:95–112

    Article  CAS  Google Scholar 

  6. Soni D, Naoghare PK, Devi SS, Pandey RA (2015) Release, transport and toxicity of engineered nanoparticles. Rev Environ Cont Toxicol 234:1–47

    CAS  Google Scholar 

  7. Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Tot Environ 407(4):1461–1468

    Article  CAS  Google Scholar 

  8. Manzo S, Rocco A, Carotenuto R, Picione F, De Luca Miglietta ML, Rametta G, Di Francia G (2011) Investigation of ZnO nanoparticles’ ecotoxicological effects towards different soil organisms. Environ Sci Poll Res Int 18(5):756–763

    Article  CAS  Google Scholar 

  9. Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspension on a broad spectrum of microorganisms. FEMS Microbiol 279:71–76

    Article  CAS  Google Scholar 

  10. Bayroodi E, Jalal R (2016) Modulation of antibiotic resistance in Pseudomonas aeruginosa by ZnO nanoparticles. Ir J Microbiol 8(2):85–92

    Google Scholar 

  11. Reddy KM, Feris K, Jason B, Wingett DG, Hanley C, Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90(213902):213902-1–213902-3

    CAS  Google Scholar 

  12. Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed Nanotech Biol Med 7:184–192

    Article  CAS  Google Scholar 

  13. Pujalté I, Passagne I, Brouillaud B, Tréguer M, Durand E, Ohayon-Courtès C, L’Azou B (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:10

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huang CC, Aronstam RS, Chen DR, Huang YW (2010) Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol in Vitro 24(1):45–55

    Article  CAS  PubMed  Google Scholar 

  15. De Angelis I, Barone F, Zijno A, Bizzarri L, Russo MT, Pozzi R, Franchini F, Giudetti G, Uboldi C, Ponti J, Rossi F, De Berardis B (2013) Comparative study of ZnO and TiO2 nanoparticles: physicochemical characterisation and toxicological effects on human colon carcinoma cells. Nanotoxicology 7(8):1361–1372

    Article  CAS  PubMed  Google Scholar 

  16. Soni D, Bafana A, Gandhi D, Saravanadevi S, Pandey RA (2014) The stress response of Pseudomonas species to silver nanoparticles at molecular level. Environ Toxicol Chem 33(9):2126–2132

    Article  CAS  PubMed  Google Scholar 

  17. Gajjar P, Pettee B, Britt DW, Huang W, Johnson WP, Anderson AJ (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 13:1–13

    Google Scholar 

  18. Vielkind M, Kampen I, Kwade A (2013) Zinc oxide nanoparticles in bacterial growth medium: optimized dispersion and growth inhibition of pseudomonas putida. Adv Nanopart 2013(2):287–293

    Article  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  20. World Medical Association (1964, 2002) Declaration of Helsinki: ethical principles for medical research involving human subjects. World Medical Association, Helsinki, Finland. http://www.wma.net/e/policy/b3.htm

  21. Ahamed M, Akhtar MJ, Raja M, Ahmad I, Siddiqui MKJ, AlSalhi MS, Alrokayan SA (2011) ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, surviving and bax/bcl-2 pathways: role of oxidative stress. Nanomed Nanotech Biol Med 7:904–913

    Article  CAS  Google Scholar 

  22. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191

    Article  CAS  PubMed  Google Scholar 

  23. Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95

    Article  CAS  PubMed  Google Scholar 

  24. Janknegt PJ, Rijstenbil JW, Van de Poll WH, Gechev TS, Buma AGJ (2007) A comparison of quantitative and qualitative superoxide dismutase assays for application to low temperature microalgae. J Photochem Photobiol B:Biol 87:218–226

    Article  CAS  Google Scholar 

  25. Jing Y, Dai J, Chalmers-Redman RME, Tatton WG, Waxman S (1999) Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94(6):2102–2111

    CAS  PubMed  Google Scholar 

  26. Luna MAC, Cordeiro CCS, Vieira ER, Estevam Alves MHM, Freitas JHES, Okada K, Takaki GMC, Elesbao do Nascimento A (2013) Mechanisms of adaptation and tolerance in Aspergillus niger UCP /WFCC 1261 by copper-induced to oxidative response. Int J Mol Sci 14:1–27

    Google Scholar 

  27. Gümüş D, Berber AA, Ada K, Aksoy H (2014) In vitro genotoxic effects of ZnO nanomaterials in human peripheral lymphocytes. Cytotechnol 66(2):317–325

    Article  Google Scholar 

  28. Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnol 19(29):295103

    Article  Google Scholar 

  29. Harwood CS, Fosnaugh K, Dispensa M (1989) Flagellation of pseudomonas putida and analysis of its motile behavior. J Bacteriol 171:4063–4066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Molina Â, Ramos C, Duque E, Ronchel MC (2000) Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Bio Biochem 32:315–321

    Article  CAS  Google Scholar 

  31. Heipieper HJ, Meulenbeld G, van Oirschot Q, de Bont J (1996) Effect of environmental factors on the trans/cis ratio of unsaturated fatty acids in pseudomonas putida S12. Appl Environ Microbiol 62:2773–2777

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nevskaya N, Tishchenko S, Gabdoulkhakov A, Nikonova E, Nikonov O, Nikulin A, Platonova O, Garber M, Nikonov S, Piendl W (2005) Ribosomal protein L1 recognizes the same specific structural motif in its target sites on the autoregulatory mRNA and 23S rRNA. Nuc Ac Res 33(2):478–485

    Article  CAS  Google Scholar 

  33. Kaczanowska M, Ryden-Aulin M (2007) Ribosome biogenesis and the translation process in Escherichia coli. Microbiol Mol Bio Rev 71(3):477–494

    Article  CAS  Google Scholar 

  34. Wilson DN, Gupta R, Mikolajka A, Nierhaus KH (2001) Ribosomal proteins: role in ribosomal functions eLS. Available from: http://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0000687.pub3/full

  35. Poole LB, Hr E (1996) Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins. Biochemist 35:56–64

    Article  CAS  Google Scholar 

  36. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  37. Lin W, Xu Y, Huang CC, Ma Y, Shannon KB, Chen DR, Huang YW (2009) Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J Nanopart Res 11:25–39

    Article  CAS  Google Scholar 

  38. Gottschalk F, Sun T, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300

    Article  CAS  PubMed  Google Scholar 

  39. Xiao Y, Vijver MG, Chen G, Peijnenburg WJ (2015) Toxicity and accumulation of Cu and ZnO nanoparticles in Daphnia magna. Environ Sci Technol 49(7):4657–4664

    Article  CAS  PubMed  Google Scholar 

  40. Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health Part A 41:2699–2711

    Article  CAS  Google Scholar 

  41. Yang H, Liu C, Yang D, Zhang H, Xi Z (2008) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: role of particle size, shape and composition. J App Toxicol 29:69–78

    Article  Google Scholar 

  42. Wang J, Deng X, Zhang F, Chen D, Ding W (2014) ZnO nanoparticle-induced oxidative stress triggers apoptosis by activating JNK signaling pathway in cultured primary astrocytes. Nano Res Lett 9:117

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to CSIR-NEERI for providing necessary facilities to conduct the research work. Deepika Soni is grateful to the Department of Science and Technology (DST), Government of India, for the award of INSPIRE fellowship (IF10154). This manuscript represents CSIR-NEERI communication number KRC/2016/JUN/EBD-EHD/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saravanadevi Sivanesan.

Ethics declarations

Peripheral blood mononuclear cells (PBMC) were obtained from healthy human donor (nonsmoker, nonalcoholic, and under no medication) following the ethical approval from the research ethics committee and standards laid down in 1964 with latest amendments of Declaration of Helsinki [20].

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, D., Gandhi, D., Tarale, P. et al. Oxidative Stress and Genotoxicity of Zinc Oxide Nanoparticles to Pseudomonas Species, Human Promyelocytic Leukemic (HL-60), and Blood Cells. Biol Trace Elem Res 178, 218–227 (2017). https://doi.org/10.1007/s12011-016-0921-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0921-y

Keywords

Navigation