Skip to main content
Log in

Tissue-Specific Regulation of the Contents and Correlations of Mineral Elements in Hens by Zinc Oxide Nanoparticles

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Due to their small size, zinc oxide (ZnO) nanoparticles (NPs) are readily absorbed and easily cross biological barriers, which make them promising candidates as diet additives. However, some studies have reported that ZnO NPs cause toxicity; therefore, their safety and potency as diet additives for farm animals should be established. This study was the first to fully evaluate the effects of ZnO NPs on the homeostasis of eight elements in seven organs/tissues. The regulation of element homeostasis was found to be organ specific with no influence on oxidation status, anti-oxidation capability, or organ damage. ZnO NPs may specifically regulate the homeostasis of mineral elements and affect the following correlations: (1) between the element content in each organ and the concentration of Zn used in ZnSO4 or ZnO NP treatments; (2) between ZnO NP and ZnSO4 treatments for the same element in each organ; and (3) between elements (in each organ in ZnSO4 or ZnO NP treatments) in layers’ organs/tissues. The use of ZnO NPs as diet additives for animals should be implemented cautiously because, among other uncertainties, they may affect mineral element content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brandão-Neto J, Stefan V, Mendonça BB, Bloise W, Castro AVB (1995) The essential role of zinc in growth. Nutr Res 15:335–358

    Article  Google Scholar 

  2. Powell SR (2000) The antioxidant properties of zinc. J Nutr 130:1447S–1454S

    CAS  PubMed  Google Scholar 

  3. Zhao CY, Tan SX, Xiao XY, Qiu XS, Pan JQ, Tang ZX (2014) Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biol Trace Elem Res 160:361–367

    Article  CAS  PubMed  Google Scholar 

  4. Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87(7):1181–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miller R, Lenihan H, Muller E, Tseng N, Hanna S, Keller A (2010) Impacts of metal oxide nanoparticles on marine phytoplankton. Environ Sci Technol 44:7329–7334

    Article  CAS  PubMed  Google Scholar 

  6. Tian L, Jiang J, Zhu F, Ren H, Li W (2010) Effects of nano-zinc oxide on the immune performance and zinc concentration in tissues of broiler. Journal of Qingdao Agricultural University (Natural Science) 27(4):315–318 In Chinese

    Google Scholar 

  7. Huang K, Liu Y, Zhu F, Ning X, Zhu L (2013) Biological function of nanometer zinc oxide adhibition in swine production. Feed review 43(3):43–45 In Chinese

    Google Scholar 

  8. Talebi AR, Khorsandi L, Moridian M (2013) The effect of zinc oxide nanoparticles on mouse spermatogenesis. J Assist Reprod Genet 30:1203–1209

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jo E, Seo JG, Kwon T, Lee M, Lee BC, Eom I, Kim P, Choi K (2013) Exposure to zinc oxide nanoparticles affects reproductive development and biodistribution in offspring rats. J Toxicol Sci 38:525–530

    Article  CAS  PubMed  Google Scholar 

  10. Brun NR, Lenz M, Wehrli B, Fent K (2014) Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: importance of zinc ions. Sci Total Environ 476-477:657–666

    Article  CAS  PubMed  Google Scholar 

  11. Lopes S, Ribeiro F, Wojnarowicz J, Łojkowski W, Jurkschat K, Crossley A, Soares AM, Loureiro S (2014) Zinc oxide nanoparticles toxicity to Daphnia magna: size-dependent effects and dissolution. Environ Toxicol Chem 33: 190–198.

  12. Basu A, Yu JY, Jenkins AJ, Nankervis AJ, Hanssen KF, Henriksen T, Lorentzen B, Garg SK, Menard MK, Hammad SM, Scardo JA, Aston CE, Lyons TJ (2015) Trace elements as predictors of preeclampsia in type 1 diabetic pregnancy. Nutr Res 35(5):421–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reis LS, Ramos AA, Camargos AS, Oba E (2014) Effect of manganese supplementation on the membrane integrity and the mitochondrial potential of the sperm of grazing Nelore bulls. Anim Reprod Sci 150(1–2):1–6

    Article  CAS  PubMed  Google Scholar 

  14. Hille R, Rétey J, Bartlewski-Hof U, Reichenbecher W (1998) Mechanistic aspects of molybdenum-containing enzymes. FEMS Microbiol Rev 22:489–501

    Article  CAS  PubMed  Google Scholar 

  15. Andrews NC, Schmidt PJ (2007) Iron homeostasis. Annu Rev Physiol 69:69–85

    Article  CAS  PubMed  Google Scholar 

  16. Harmon BG, Liu CT, Jensen AH, Baker DH (1976) Dietary magnesium levels for sows during gestation and lactation. J Anim Sci 42:860–865

    Article  CAS  PubMed  Google Scholar 

  17. Brini M, Ottolini D, Calì T, Carafoli E (2013) Calcium in health and disease. Met Ions Life Sci 13:81–137

    Article  PubMed  Google Scholar 

  18. Beck P, Rodehutscord M, Bennewitz J, Bessei W (2014) A pilot study of the genetic variation of phosphorus utilization in young Japanese quail (Coturnix japonica). Poult Sci 93(8):1916–1921

    Article  CAS  PubMed  Google Scholar 

  19. Rosenberg B, Van Camp L, Krigas T (1965) Inhibition of cell division in Escherichia coli by electrolysis products from platinum electrode. Nature 205:698–699

    Article  CAS  PubMed  Google Scholar 

  20. Baek M, Chung HE, Yu J, Lee JA, Kim TH, Oh JM, Lee WJ, Paek SM, Lee JK, Jeong J, Choy JH, Choi SJ (2012) Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. Int J Nanomedicine 7:3081–3097

    PubMed  PubMed Central  Google Scholar 

  21. Zhao, Y., Li, L., Zhang, P-F., Shen, W.,; Liu, J., Yang, F-F., et al (2015) Differential regulation of gene and protein expression by zinc oxide nanoparticles in hen’s ovarian granulosa cells: specific roles of nanoparticles. PLoS One 10(10), e0140499.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhao Y, Li L, Zhang P, Liu X, Zhang W, Ding Z, Wang S, Shen W, Min L, Hao Z (2016) Regulation of egg quality and lipids metabolism by zinc oxide nanoparticles. Poult Sci 95(4):920–933

    Article  PubMed  Google Scholar 

  23. Sun Q, Guo Y, Ma S, Yuan J, An S, Li J (2012) Dietary mineral sources altered lipid and antioxidant profiles in broiler breeders and post hatch growth of their offsprings. Biol Trace Elem Res 145:318–324

    Article  CAS  PubMed  Google Scholar 

  24. Faust J, Zhang W, Chen Y, Capco D (2014) Alpha-Fe(2)O(3) elicits diameter-dependent effects during exposure to an in vitro model of the human placenta. Cell Biol Toxicol 30:31–53

    Article  CAS  PubMed  Google Scholar 

  25. Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, Yoshida T, Ogura T, Nabeshi H, Nagano K, Abe Y, Kamada H, Monobe Y, Imazawa T, Aoshima H, Shishido K, Kawai Y, Mayumi T, Tsunoda S, Itoh N, Yoshikawa T, Yanagihara I, Saito S, Tsutsumi Y (2011) Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol 6:321–328

    Article  CAS  PubMed  Google Scholar 

  26. Osmond-McLeod MJ, Oytam Y, Kirby JK, Gomez-Fernandez L, Baxter B, McCall MJ (2014) Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles. Nanotoxicology Suppl 1:72–84

    Article  Google Scholar 

  27. Zhao Y, Tan YS, Strynar MJ, Perez G, Haslam SZ, Yang C (2012) Perfluorooctanoic acid effects on ovaries mediate its inhibition of peripubertal mammary gland development in Balb/c and C57Bl/6 mice. Reprod Toxicol 33(4):563–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Beydilli H, Yilmaz N, Cetin ES, Topal Y, Celik OI, Sahin C, Topal H, Cigerci IH, Sozen H (2015) Evaluation of the protective effect of silibinin against diazinon induced hepatotoxicity and free-radical damage in rat liver. Iran Red Crescent Med J 17(4):e25310

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hidaka S, Kränzlin B, Gretz N, Witzgall R (2002) Urinary clusterin levels in the rat correlate with the severity of tubular damage and may help to differentiate between glomerular and tubular injuries. Cell Tissue Res 310(3):289–296

    Article  CAS  PubMed  Google Scholar 

  30. Han WK, Waikar SS, Johnson A, Betensky RA, Dent CL, Devarajan P, Bonventre JV (2008) Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int 73(7):863–869

    Article  CAS  PubMed  Google Scholar 

  31. Sawai K, Mukoyama M, Mori K, Kasahara M, Koshikawa M, Yokoi H, Yoshioka T, Ogawa Y, Sugawara A, Nishiyama H, Yamada S, Kuwahara T, Saleem MA, Shiota K, Ogawa O, Miyazato M, Kangawa K, Nakao K (2007) Expression of CCN1 (CYR61) in developing, normal, and diseased human kidney. Am J Physiol Renal Physiol 293(4):F1363–F1372

    Article  CAS  PubMed  Google Scholar 

  32. Sheng L, Wang L, Sang X, Zhao X, Hong J, Cheng S, Yu X, Liu D, Xu B, Hu R, Sun Q, Cheng J, Cheng Z, Gui S, Hong F (2014) Nano-sized titanium dioxide-induced splenic toxicity: a biological pathway explored using microarray technology. J Hazard Mater 278:180–188

    Article  CAS  PubMed  Google Scholar 

  33. Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR, Grandjean P (1997) Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin Chem 43(7):1209–1214

    CAS  PubMed  Google Scholar 

  34. Miller AF (2012) Superoxide dismutases: ancient enzymes and new insights. FEBS Lett 586(5):585–595

    Article  CAS  PubMed  Google Scholar 

  35. Li S, Yan T, Yang JQ, Oberley TD, Oberley LW (2000) The role of cellular glutathione peroxidase redox regulation in the suppression of tumor cell growth by manganese superoxide dismutase. Cancer Res 60(14):3927–3939

    CAS  PubMed  Google Scholar 

  36. Ghiselli A, Serafini M, Natella F, Scaccini C (2000) Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic Biol Med 29(11):1106–1114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31402256), Qingdao Technology Innovation Program for Application Foundation (14-2-4-22-jch), and QingDao Agricultural University Outstanding Research Foundation.

The TEM and EDS work in this study made use of the resources of the Beijing National Center for Electron Microscopy at Tsinghua University. We would like to thank Ms. Hui-Hua Zhou in Tsinghua University for helping with these analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hui Hao.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Feng, YN., Li, L. et al. Tissue-Specific Regulation of the Contents and Correlations of Mineral Elements in Hens by Zinc Oxide Nanoparticles. Biol Trace Elem Res 177, 353–366 (2017). https://doi.org/10.1007/s12011-016-0847-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0847-4

Keywords

Navigation