Skip to main content
Log in

Coexistence of Copper in the Iron-Rich Particles of Aceruloplasminemia Brain

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The interaction between iron and copper has been discussed in association with human health and diseases for many years. Ceruloplasmin, a multi-copper oxidase, is mainly involved in iron metabolism and its genetic defect, aceruloplasminemia (ACP), shows neurological disorders and diabetes associated with excessive iron accumulation, but little is known about the state of copper in the brain. Here, we investigated localization of these metals in the brains of three patients with ACP using electron microscopes equipped with an energy-dispersive x-ray analyzer. Histochemically, iron deposition was observed mainly in the basal ganglia and dentate nucleus, and to lesser degree in the cerebral cortex of the patients, whereas copper grains were not detected. X-ray microanalysis identified two types of iron-rich particles in their brains: dense bodies, namely hemosiderins, and their aggregated inclusions. A small number of hemosiderins and most inclusions contained a significant amount of copper which was enough for distinct Cu x-ray images. These copper-containing particles were observed more frequently in the putamen and dentate nucleus than the cerebral cortex. Coexistence of iron and copper was supported by good correlations in the molecular ratios between these two metals in iron-rich particles with Cu x-ray image. Iron-dependent copper accumulation in iron-rich particles may suggest that copper recycling is enhanced to meet the increased requirement of cuproproteins in iron overload brain. In conclusion, the iron-rich particles with Cu x-ray image were found in the ACP brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Collins JF, Prohaska JR, Knutson MD (2010) Metabolic crossroads of iron and copper. Nutr Rev 68(3):133–147. doi:10.1111/j.1753-4887.2010.00271.x

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3): 65–87. doi:10.1016/j.tox.2011.03.001.

  3. Hare D, Ayton S, Bush A, Lei P (2013) A delicate balance: iron metabolism and diseases of the brain. Front Aging Neurosci 5:34. doi:10.3389/fnagi.2013.00034

    Article  PubMed  PubMed Central  Google Scholar 

  4. Scheiber IF, Mercer JF, Dringen R (2014) Metabolism and functions of copper in brain. Prog Neurobiol 116:33–57. doi:10.1016/j.pneurobio.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  5. Vashchenko G, MacGillivray RT (2013) Multi-copper oxidases and human iron metabolism. Nutrients 5(7):2289–2313. doi:10.3390/nu5072289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Levi S, Finazzi D (2014) Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms. Front Pharmacol 5:99. doi:10.3389/fphar.2014.00099

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bandmann O, Weiss KH, Kaler SG (2015) Wilson’s disease and other neurological copper disorders. Lancet Neurol 14(1):103–113. doi:10.1016/S1474-4422(14)70190-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yoshida K, Furihata K, Takeda S, Nakamura A, Yamamoto K, Morita H, Hiyamuta S, Ikeda S, Shimizu N, Yanagisawa N (1995) A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans. Nat Genet 9(3):267–272. doi:10.1038/ng0395-267

    Article  CAS  PubMed  Google Scholar 

  9. Yazaki M, Yoshida K, Nakamura A, Furihata K, Yonekawa M, Okabe T, Yamashita N, Ohta M, Ikeda S (1998) A novel splicing mutation in the ceruloplasmin gene responsible for hereditary ceruloplasmin deficiency with hemosiderosis. J Neurol Sci 156(1):30–34. doi:10.1016/S0022-510X(98)00015-X

    Article  PubMed  Google Scholar 

  10. Morita H, Ikeda S, Yamamoto K, Morita S, Yoshida K, Nomoto S, Kato M, Yanagisawa N (1995) Hereditary ceruloplasmin deficiency with hemosiderosis: a clinicopathological study of a Japanese family. Ann Neurol 37(5):646–656

    Article  CAS  PubMed  Google Scholar 

  11. Hayashi H, Wakusawa S, Yano M, Okada T (2007) Genetic background of Japanese patients with adult-onset storage diseases in the liver. Hepatol Res 37(10):777–783. doi:10.1111/j.1872-034X.2007.00114.x

    Article  CAS  PubMed  Google Scholar 

  12. Kurz T, Eaton JW, Brunk UT (2011) The role of lysosomes in iron metabolism and recycling. Int J Biochem Cell Biol 43(12):1686–1697. doi:10.1016/j.biocel.2011.08.016

    Article  CAS  PubMed  Google Scholar 

  13. Warley A (2016) Development and comparison of the methods for quantitative electron probe X-ray microanalysis analysis of thin specimens and their application to biological material. J Microsc 261(2):177–184. doi:10.1111/jmi.12306

    Article  CAS  PubMed  Google Scholar 

  14. Hanaichi T, Kidokoro R, Hayashi H, Sakamoto N (1984) Electron probe x-ray analysis on human hepatocellular lysosomes with copper deposits: copper binding to a thiol-protein in lysosomes. Lab Invest 51(5):592–597

    CAS  PubMed  Google Scholar 

  15. Yonekawa M, Okabe T, Asamoto Y, Ohta M (1999) A case of hereditary ceruloplasmin deficiency with iron deposition in the brain associated with chorea, dementia, diabetes mellitus and retinal pigmentation: administration of fresh-frozen human plasma. Eur Neurol 42(3):157–162. doi:10.1159/000008091

    Article  CAS  PubMed  Google Scholar 

  16. Kaneko K, Yoshida K, Arima K, Ohara S, Miyajima H, Kato T, Ohta M, Ikeda S (2002) Astrocytic deformity and globular structures are characteristic of the brains of patients with aceruloplasminemia. J Neuropathol Exp Neurol 61(12):1069–1077. doi:10.1093/jnen/61.12.1069

    Article  PubMed  Google Scholar 

  17. Oide T, Yoshida K, Kaneko K, Ohta M, Arima K (2006) Iron overload and antioxidative role of perivascular astrocytes in aceruloplasminemia. Neuropathol Appl Neurobiol 32(2):170–176. doi:10.1111/j.1365-2990.2006.00710.x

    Article  CAS  PubMed  Google Scholar 

  18. Kaneko K, Hineno A, Yoshida K, Ohara S, Morita H, Ikeda S (2012) Extensive brain pathology in a patient with aceruloplasminemia with a prolonged duration of illness. Hum Pathol 43(3):451–456. doi:10.1016/j.humpath.2011.05.016

    Article  PubMed  Google Scholar 

  19. Hayashi H, Hattori A, Tatsumi Y, Hayashi K, Katano Y, Ueyama J, Wakusawa S, Yano M, Goto H (2013) Various copper and iron overload patterns in the livers of patients with Wilson disease and idiopathic copper toxicosis. Med Mol Morphol 46(3):133–140. doi:10.1007/s00795-013-0015-2

    Article  PubMed  Google Scholar 

  20. Ward RJ, Ramsey MH, Dickson DP, Florence A, Crichton RR, Peters TJ, Mann S (1992) Chemical and structural characterisation of iron cores of haemosiderins isolated from different sources. Eur J Biochem 209(3):847–850

    Article  CAS  PubMed  Google Scholar 

  21. Motonishi S, Hayashi H, Fujita Y, Okada H, Kusakabe A, Ito M, Miyamoto K, Ueno T (2006) Copper- and iron-rich matrices in hepatocellular lipofuscin particles of a young male patient: diagnostic ultrastructures for Wilson disease. Ultrastruct Pathol 30(6):409–414. doi:10.1080/01913120600854327

    Article  PubMed  Google Scholar 

  22. Sheinberg IH, Gitlin D (1952) Deficiency of ceruloplasmin in patients with hepatolenticular degeneration (Wilson’s disease). Science 116(3018):484–485. doi:10.1126/science.1163018.484

    Article  Google Scholar 

  23. Zhao M, Matter K, Laissue JA, Zimmermann A (1995) Copper/zinc and manganese superoxide dismutase immunoreactivity in hepatic iron overload diseases. Histol Histopathol 10(4):925–935

    CAS  PubMed  Google Scholar 

  24. Ono Y, Ishigami M, Hayashi K, Wakusawa S, Hayashi H, Kumagai K, Morotomi N, Yamashita T, Kawanaka M, Watanabe M, Ozawa H, Tai M, Miyajima H, Yoshioka K, Hirooka Y, Goto H. (2015) Copper accumulates in hemosiderins in livers of patients with iron overload syndromes. J Clin Transl Hepatol 3(2): 85–92. doi:10.14218/JCTH.2015.00004

Download references

Acknowledgments

The authors are grateful to Dr. Michiya Ohta (Department of Neurology, Hiroshima Red Cross Hospital and Atomic Bomb Survivors Hospital, Hiroshima, Japan) for kindly providing us with the brain tissues for case 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiro Yoshida.

Ethics declarations

Conflict of Interest

None declared

Electronic supplementary material

Supplementary Fig. 1

Element images for a hemosiderin particle in the putamen of the DM1 patient. This figure was obtained with the 100 sweep cycles. This hemosiderin was small and lysosomal in size, and heterogeneous for inner structures with a high electron density (upper left). An Fe image first appeared with 25 sweep cycles, and then, both Fe and Cu images appeared with 100 sweep cycles, expressed as Fe/Cu hemosiderin (upper middle, upper right). Note that O (lower left), S (lower middle), and P (lower right) also accumulate in the hemosiderin. Bars = 0.5 μm. It may be important that most hemosiderins in the controls contain similar amount of copper to the surrounding cytoplasm, so that the iron image of hemosiderin, but not copper image appears with 100 sweep cycles (figures not shown). (GIF 463 kb)

High resolution image (TIFF 917 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, K., Hayashi, H., Wakusawa, S. et al. Coexistence of Copper in the Iron-Rich Particles of Aceruloplasminemia Brain. Biol Trace Elem Res 175, 79–86 (2017). https://doi.org/10.1007/s12011-016-0744-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0744-x

Keywords

Navigation