Skip to main content
Log in

Alleviation of Lead-Induced Apoptosis by Puerarin via Inhibiting Mitochondrial Permeability Transition Pore Opening in Primary Cultures of Rat Proximal Tubular Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Previous study has demonstrated that mitochondrial-dependent apoptotic pathway is involved in the nephroprotective effect of puerarin (PU) against lead-induced cytotoxicity in primary cultures of rat proximal tubular (rPT) cells. To further clarify how PU exerts its antiapoptotic effects, this study was designed to investigate the role of mitochondrial permeability transition (MPT) and subsequent apoptotic events in the process of PU against Pb-induced cytotoxicity in rPT cells. The results showed that Pb-mediated mitochondrial permeability transition pore (MPTP) opening together with mitochondrial cytochrome c release, activations of caspase-9 and caspase-3, and subsequent poly-ADP-ribose polymerase (PARP) cleavage can be effectively blocked by the addition of PU. Simultaneously, upregulation and downregulation of Bcl-2 and Bax with increased Bcl-2/Bax ratio due to PU administration further alleviated Pb-induced mitochondrial apoptosis. Moreover, PU can reverse Pb-induced ATP depletion by restoring mitochondrial fragmentation to affect ATP production and by regulating expression levels of ANT-1 and ANT-2 to improve ATP transport. In summary, PU produced a significant protection against Pb-induced mitochondrial apoptosis in rPT cells by inhibiting MPTP opening to ameliorate the mitochondrial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MPT:

Mitochondrial permeability transition

rPT:

Rat proximal tubular

MPTP:

Mitochondrial permeability transition pore

ANT:

Adenine nucleotide translocase

cyt-c :

Cytochrome c

ROS:

Reactive oxygen species

BCA:

Bicinchonininc acid

MMP:

Mitochondrial membrane potential

PI:

Propidium iodide

CoCl2 :

Cobalt chloride

Calcein-AM:

Calcein acetoxymethyl ester

References

  1. Bilandžić N, Sedak M, Vratarić D, Perić T, Šimić B (2009) Lead and cadmium in red deer and wild boar from different hunting grounds in Croatia. Sci Total Environ 407:4243–4247

    Article  PubMed  Google Scholar 

  2. Oyagbemi AA, Omobowale TO, Akinrinde AS, Saba AB, Ogunpolu BS, Daramola O (2015) Lack of reversal of oxidative damage in renal tissues of lead acetate-treated rats. Environ Toxicol 30:1235–1243

    Article  PubMed  Google Scholar 

  3. Patrick L (2006) Lead toxicity, a review of the literature. Part 1: exposure, evaluation, and treatment. Altern Med Rev 11:2–22

    PubMed  Google Scholar 

  4. Wang H, Wang ZK, Jiao P, Zhou XP, Yang DB, Wang ZY, Wang L (2015) Redistribution of subcellular calcium and its effect on apoptosis in primary cultures of rat proximal tubular cells exposed to lead. Toxicology 333:137–146

    Article  CAS  PubMed  Google Scholar 

  5. Jia Q, Ha X, Yang Z, Hui L, Yang X (2012) Oxidative stress: a possible mechanism for lead-induced-apoptosis and nephrotoxicity. Toxicol Mech Methods 22:705–710

    Article  CAS  PubMed  Google Scholar 

  6. Liu CM, Ma JQ, Sun YZ (2012) Puerarin protects rat kidney from lead-induced apoptosis by modulating the PI3K/Akt/eNOS pathway. Toxicol Appl Pharmacol 258:330–342

    Article  CAS  PubMed  Google Scholar 

  7. Wang L, Wang H, Li J, Chen D, Liu ZP (2011) Simultaneous effects of lead and cadmium on primary cultures of rat proximal tubular cells: interaction of apoptosis and oxidative stress. Arch Environ Contam Toxicol 61:500–511

    Article  CAS  PubMed  Google Scholar 

  8. Wang L, Lin S, Li Z, Yang D, Wang Z (2013) Protective effects of puerarin on experimental chronic lead nephrotoxicity in immature female rats. Hum Exp Toxicol 32:172–185

    CAS  PubMed  Google Scholar 

  9. Liu G, Li ZF, Wang JQ, Wang H, Wang ZY, Wang L (2014) Puerarin protects against lead- induced cytotoxicity in cultured primary rat proximal tubular cells. Hum Exp Toxicol 33:1071–1080

    Article  PubMed  Google Scholar 

  10. Lisea M, Shirihai OS (2013) Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17:491–506

    Article  Google Scholar 

  11. Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87:1157–1180

    Article  CAS  PubMed  Google Scholar 

  12. Liu G, Wang ZK, Wang ZY, Yang DB, Liu ZP, Wang L (2015) Mitochondrial permeability transition and its regulatory components are implicated in apoptosis of primary cultures of rat proximal tubular cells exposed to lead. Arch Toxicol. doi:10.1007/s00204-015-1547-0

    Google Scholar 

  13. Kinnally KW, Peixoto PM, Ryu SY, Dejean LM (2011) Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim Biophys Acta 1813:616–622

    Article  CAS  PubMed  Google Scholar 

  14. Wang L, Wang H, Hu M, et al. (2009) Oxidative stress and apoptotic changes in primary cultures of rat proximal tubular cells exposed to lead. Arch Toxicol 83:417–427

    Article  CAS  PubMed  Google Scholar 

  15. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  16. Jacotot E, Deniaud A, Borgne-Sanchez A, Touat Z, Briand JP, Le-Bras M, Brenner C (2006) Therapeutic peptides: targeting the mitochondrion to modulate apoptosis. Biochim Biophys Acta 1757:1312–1323

    Article  CAS  PubMed  Google Scholar 

  17. Armstrong JS (2006) The role of the mitochondrial permeability transition in cell death. Mitochondrion 6:225–234

    Article  CAS  PubMed  Google Scholar 

  18. Gupta S, Kass GE, Szegezdi E, Joseph B (2009) The mitochondrial death pathway: a promising therapeutic target in diseases. J Cell Mol Med 13:1004–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Parrish AB, Freel CD, Kornbluth S (2013) Cellular mechanisms controlling caspase activation and function. Cold Spring Harbor perspectives in biology 5(6). doi:10.1101/cshperspect.a008672

  20. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  CAS  PubMed  Google Scholar 

  21. Dias-da-Silva D, Carmo H, Lynch A, Silva E (2013) An insight into the hepatocellular death induced by amphetamines, individually and in combination: the involvement of necrosis and apoptosis. Arch Toxicol 87:2165–2185

    Article  CAS  PubMed  Google Scholar 

  22. Guo X, Disatnik MH, Monbureau M, Shamloo M, Mochly-Rosen D, Qi X (2013) Inhibition of mitochondrial fragmentation diminishes Huntington’s disease-associated neurodegeneration. J Clin Invest 123:5371–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arnoult D (2007) Mitochondrial fragmentation in apoptosis. Trends Cell Biol 17:6–12

    Article  CAS  PubMed  Google Scholar 

  24. Paradies G, Paradies V, Ruggiero FM, Petrosillo G (2015) Protective role of melatonin in mitochondrial dysfunction and related disorders. Arch Toxicol 89:923–939

    Article  CAS  PubMed  Google Scholar 

  25. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  CAS  PubMed  Google Scholar 

  26. Chevrollier A, Loiseau D, Reynier P, Stepien G (2011) Adenine nucleotide translocase 2 is a key mitochondrial protein in cancer metabolism. Biochim Biophys Acta 1807:562–567

    Article  CAS  PubMed  Google Scholar 

  27. Giorgi C, Baldassari F, Bononi A, Bonora M, Marchi ED, Marchi S, Missiroli S, Patergnani S, Rimessi A, Suski JM, Wieckowski MR, Pinton P (2012) Mitochondrial Ca2+ and apoptosis. Cell Calcium:36–43

  28. Brenner C, Cadiou H, Vieira HL, Zamzami N, Marzo I, Xie Z, Leber B, Andrews D, Duclohier H, Reed JC, Kroemer G (2000) Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene 19:329–336

    Article  CAS  PubMed  Google Scholar 

  29. Siddiqui WA, Ahad A, Ahsan H (2015) The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol 89:289–317

    Article  CAS  PubMed  Google Scholar 

  30. Sheridan C, Delivani P, Cullen SP, Martin SJ (2008) Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome C release. Mol Cell 31:570–585

    Article  CAS  PubMed  Google Scholar 

  31. Ryu SW, Choi K, Yoon J, Kim S, Choi C (2012) Endoplasmic reticulum-specific BH3-only protein BNIP1 induces mitochondrial fragmentation in a Bcl-2- and Drp1-dependent manner. J Cell Physiol 227:3027–3035

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the national nature science foundation of China (No. 31472251), a foundation for the author of national excellent doctoral dissertation of People’s Republic of China (No. 201266) and the fund of Fok Ying Tung education foundation under grant no. 141022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Wang.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Zhong-Kun Wang, Xue-Lei Zhou, and Xiang-Bin Song contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZK., Zhou, XL., Song, XB. et al. Alleviation of Lead-Induced Apoptosis by Puerarin via Inhibiting Mitochondrial Permeability Transition Pore Opening in Primary Cultures of Rat Proximal Tubular Cells. Biol Trace Elem Res 174, 166–176 (2016). https://doi.org/10.1007/s12011-016-0701-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0701-8

Keywords

Navigation