Skip to main content
Log in

Dietary selenium increases the antioxidant levels and ATPase activity in the arteries and veins of poultry

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium (Se) deficiency is associated with the pathogenesis of vascular diseases. It has been shown that oxidative levels and ATPase activity were involved in Se deficiency diseases in humans and mammals; however, the mechanism by how Se influences the oxidative levels and ATPase activity in the poultry vasculature is unclear. We assessed the effects of dietary Se deficiency on the oxidative stress parameters (superoxide dismutase, catalase, and hydroxyl radical) and ATPase (Na+K+-ATPase, Ca++-ATPase, Mg++-ATPase, and Ca++Mg++-ATPase) activity in broiler poultry. A total of 40 broilers (1-day old) were randomly divided into a Se-deficient group (L group, fed a Se-deficient diet containing 0.08 mg/kg Se) and a control group (C group, fed a diet containing sodium selenite at 0.20 mg/kg Se). Then, arteries and veins were collected following euthanasia when typical symptoms of Se deficiency appeared. Antioxidant indexes and ATPase activity were evaluated using standard assays in arteries and veins. The results indicated that superoxide dismutase activity in the artery according to dietary Se deficiency was significantly lower (p < 0.05) compared with the C group. The catalase activity in the veins and hydroxyl radical inhibition in the arteries and veins by dietary Se deficiency were significantly higher (p < 0.05) compared with the C group. The Se-deficient group showed a significantly lower (p < 0.05) tendency in Na+K+-ATPase activity, Ca++-ATPase activity, and Ca++Mg++-ATPase activity. There were strong correlations between antioxidant indexes and Ca++-ATPase activity. Thus, these results indicate that antioxidant indexes and ATPases may have special roles in broiler artery and vein injuries under Se deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Naziroglu M, Yurekli VA (2013) Effects of antiepileptic drugs on antioxidant and oxidant molecular pathways: focus on trace elements. Cell Mol Neurobiol 33:589–599

    Article  CAS  PubMed  Google Scholar 

  2. Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268

    Article  CAS  PubMed  Google Scholar 

  3. Martin-Romero FJ, Kryukov GV, Lobanov AV et al (2001) Selenium metabolism in Drosophila: selenoproteins, selenoprotein mRNA expression, fertility, and mortality. J Biol Chem 276:29798–29804

    Article  CAS  PubMed  Google Scholar 

  4. Papp LV, Holmgren A, Khanna KK (2010) Selenium and selenoproteins in health and disease. Antioxid Redox Signal 12:793–795

    Article  CAS  PubMed  Google Scholar 

  5. Ullrey D, Combs G, Conrad H et al (1983) Selenium in nutrition. Revised edition. NAS-NRC, Washington, DC

    Google Scholar 

  6. Xu JX, Cao CY, Sun YC et al (2014) Effects on liver hydrogen peroxide metabolism induced by dietary selenium deficiency or excess in chickens. Biol Trace Elem Res 159:174–182

    Article  CAS  PubMed  Google Scholar 

  7. Nazıroğlu M, Çelik Ö, Uğuz AC, Bütün A (2015) Protective effects of riboflavin and selenium on brain microsomal Ca2 + −ATPase and oxidative damage caused by glyceryl trinitrate in a rat headache model. Biol Trace Elem Res 164:72–79

    Article  PubMed  Google Scholar 

  8. Yao L, Du Q, Yao H et al (2015) Roles of oxidative stress and endoplasmic reticulum stress in selenium deficiency-induced apoptosis in chicken liver. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine 28:255–265

    Article  CAS  Google Scholar 

  9. Xu S-W, Yao H-D, Zhang J et al (2013) The oxidative damage and disbalance of calcium homeostasis in brain of chicken induced by selenium deficiency. Biol Trace Elem Res 151:225–233

    Article  CAS  PubMed  Google Scholar 

  10. Krebs J, Vorherr T, James P, Carafoli E, Craig TA (2012) Plasma membrane CA*-ATPase. Calcium Binding Proteins in Normal and Transformed Cells 269:163

    Article  Google Scholar 

  11. Sarkadi B, Szasz I, Gerloczy A, Gardos G (1977) Transport parameters and stoichiometry of active calcium ion extrusion in intact human red cells. Biochim Biophys Acta 464:93–107

    Article  CAS  PubMed  Google Scholar 

  12. Elliott AC (2001) Recent developments in non-excitable cell calcium entry. Cell Calcium 30:73–93

    Article  CAS  PubMed  Google Scholar 

  13. Barritt GJ (1999) Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signalling requirements. Biochem J 337(Pt 2):153–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lai JC, Guest JF, Leung TK, Lim L, Davison AN (1980) The effects of cadmium, manganese and aluminium on sodium-potassium-activated and magnesium-activated adenosine triphosphatase activity and choline uptake in rat brain synaptosomes. Biochem Pharmacol 29:141–146

    Article  CAS  PubMed  Google Scholar 

  15. Somló C, Hassón-Voloch A (1987) Effect of Li + and Ba 2+ on the electrocyte membrane-bound (Na++ K+)-ATPase. Int J Biochem 19:17–21

    Article  PubMed  Google Scholar 

  16. Hussain S, Anner RM, Anner BM (1992) Cysteine protects Na, K-ATPase and isolated human lymphocytes from silver toxicity. Biochem Biophys Res Commun 189:1444–1449

    Article  CAS  PubMed  Google Scholar 

  17. Pedrenho A, Meilhac G, HassonVoloch A (1996) Inhibitory effects of cadmium and lead on (Na+, K+)-ATPase of Electrophorus electricus (L) electrocyte. Toxic Substance Mechanisms 15:231–247

    CAS  Google Scholar 

  18. Ferrari P, Ferrandi M, Valentini G, Bianchi G (2006) Rostafuroxin: an ouabain antagonist that corrects renal and vascular Na + -K + -ATPase alterations in ouabain and adducin-dependent hypertension. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 290:R529–R535

    Article  CAS  PubMed  Google Scholar 

  19. Sneddon AA (2011) Selenium and vascular health. Pure Appl Chem 84:239–248

    Article  Google Scholar 

  20. Yao H, Liu W, Zhao W et al (2014) Different responses of selenoproteins to the altered expression of selenoprotein W in chicken myoblasts. RSC Adv 4:64032–64042

    Article  CAS  Google Scholar 

  21. Naziroglu M, Karaoglu A, Aksoy AO (2004) Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology 195:221–230

    Article  CAS  PubMed  Google Scholar 

  22. Kutluhan S, Naziroglu M, Celik O, Yilmaz M (2009) Effects of selenium and topiramate on lipid peroxidation and antioxidant vitamin levels in blood of pentylentetrazol-induced epileptic rats. Biol Trace Elem Res 129:181–189

    Article  CAS  PubMed  Google Scholar 

  23. Messaoudi I, Hammouda F, El Heni J et al (2010) Reversal of cadmium-induced oxidative stress in rat erythrocytes by selenium, zinc or their combination. Exp Toxicol Pathol 62:281–288

    Article  CAS  PubMed  Google Scholar 

  24. Hasegawa T, Mihara M, Nakamuro K, Sayato Y (1996) Mechanisms of selenium methylation and toxicity in mice treated with selenocystine. Arch Toxicol 71:31–38

    Article  CAS  PubMed  Google Scholar 

  25. Wang HW, Wang JX, Yang LK et al (2015) Effects of dietary selenium supplements on the superoxide dismutase (SOD) activity of Neocaridina heteropoda (Crustacea: Decapoda: Atyidae: Caridina) exposed to ambient sodium polyphosphate. Adv Mater Res 1073:1841–1843

    Google Scholar 

  26. Chen P, Li J, Liu P et al (2012) cDNA cloning, characterization and expression analysis of catalase in swimming crab Portunus trituberculatus: cDNA cloning and expression analysis of catalase gene of Portunus trituberculatus. Mol Biol Rep 39:9979–9987

    Article  CAS  PubMed  Google Scholar 

  27. Ren H, Li J, Li J et al (2015) Cloning of catalase and expression patterns of catalase and selenium-dependent glutathione peroxidase from Exopalaemon carinicauda in response to low salinity stress. Acta Oceanol Sin 34:52–61

    Article  CAS  Google Scholar 

  28. Zhang ZW, Wang QH, Zhang JL et al (2012) Effects of oxidative stress on immunosuppression induced by selenium deficiency in chickens. Biol Trace Elem Res 149:352–361

    Article  CAS  PubMed  Google Scholar 

  29. Jebur AB, Nasr HM, El-Demerdash FM (2014) Selenium modulates beta-cyfluthrin-induced liver oxidative toxicity in rats. Environ Toxicol 29:1323–1329

    CAS  PubMed  Google Scholar 

  30. Naziroglu M (2012) Molecular role of catalase on oxidative stress-induced Ca(2+) signaling and TRP cation channel activation in nervous system. J Recept Signal Transduct Res 32:134–141

    Article  CAS  PubMed  Google Scholar 

  31. Li HT, Feng L, Jiang WD et al (2013) Oxidative stress parameters and anti-apoptotic response to hydroxyl radicals in fish erythrocytes: protective effects of glutamine, alanine, citrulline and proline. Aquat Toxicol 126:169–179

    Article  CAS  PubMed  Google Scholar 

  32. Sun Y, Yin Y, Zhang J et al (2008) Hydroxyl radical generation and oxidative stress in Carassius auratus liver, exposed to pyrene. Ecotoxicol Environ Saf 71:446–453

    Article  CAS  PubMed  Google Scholar 

  33. Liu XF, Zhang LM, Guan HN, Zhang ZW, Xu SW (2013) Effects of oxidative stress on apoptosis in manganese-induced testicular toxicity in cocks. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 60:168–176

    Article  CAS  Google Scholar 

  34. Paulino MG, Sakuragui MM, Fernandes MN (2012) Effects of atrazine on the gill cells and ionic balance in a neotropical fish, Prochilodus lineatus. Chemosphere 86:1–7

    Article  CAS  PubMed  Google Scholar 

  35. Ozcan Oruc E, Uner N, Tamer L (2002) Comparison of Na(+)K(+)-ATPase activities and malondialdehyde contents in liver tissue for three fish species exposed to azinphosmethyl. Bull Environ Contam Toxicol 69:271–277

    Article  CAS  PubMed  Google Scholar 

  36. Bala K, Tripathy B, Sharma D (2006) Neuroprotective and anti-ageing effects of curcumin in aged rat brain regions. Biogerontology 7:81–89

    Article  CAS  PubMed  Google Scholar 

  37. Butun A, Naziroglu M, Demirci S, Celik O, Uguz AC (2015) Riboflavin and vitamin E increase brain calcium and antioxidants, and microsomal calcium-ATP-ase values in rat headache models induced by glyceryl trinitrate. J Membr Biol 248:205–213

    Article  CAS  PubMed  Google Scholar 

  38. Yuan Y, Jiang C-y, Xu H, et al. (2013) Cadmium-induced apoptosis in primary rat cerebral cortical neurons culture is mediated by a calcium signaling pathway.

  39. Sabolic I (2006) Common mechanisms in nephropathy induced by toxic metals. Nephron Physiol 104:p107–p114

    Article  CAS  PubMed  Google Scholar 

  40. Nazıroğlu M, Kutluhan S, Yılmaz M (2008) Selenium and topiramate modulates brain microsomal oxidative stress values, Ca2+-ATPase activity, and EEG records in pentylentetrazol-induced seizures in rats[J]. J Membr Biol 225(1–3):39–49

    PubMed  Google Scholar 

  41. Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268:C799–C822

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the International (Regional) Cooperation and Exchange Projects of the National Natural Science Foundation of China (31320103920). The authors thank the members of the veterinary department medicine laboratory at the College of Veterinary Medicine, Northeast Agricultural University, for their help in collecting the vascular tissue samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziwei Zhang or Shiwen Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

All other authors have read the manuscript and have agreed to submit it in its current form for consideration for publication in the journal.

Ethical Approval

All procedures used in this study were approved by the Institutional Animal Care and Use Committee of the Northeast Agricultural University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Zhao, X., Fan, R. et al. Dietary selenium increases the antioxidant levels and ATPase activity in the arteries and veins of poultry. Biol Trace Elem Res 172, 222–227 (2016). https://doi.org/10.1007/s12011-015-0584-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0584-0

Keywords

Navigation