Skip to main content
Log in

Role of ZnS Nanoparticles on Endoplasmic Reticulum Stress-mediated Apoptosis in Retinal Pigment Epithelial Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Age-related macular degeneration (AMD) is the leading cause for irreversible visual impairment affecting 30–50 million individuals every year. Oxidative stress and endoplasmic reticulum stress have been identified as crucial factors for the pathogenesis of AMD. Current treatments do not focus on underlying stimuli responsible for the disease like AMD. Zinc is an important trace metal in retina and its deficiency leads to AMD. Recent studies on zinc sulphide nanoparticles (ZnS-NPs) are gaining attention in the field of physical and biological research. In this present study, in investigating the role of ZnS-NPs on hydrogen peroxide and thapsigargin-treated primary mice retinal pigment epithelial (MRPE) cells, we synthesized ZnS-NPs and characterized using atomic force microscope (AFM) and SEM-EDX. The ZnS-NPs abrogate the primary MRPE cell death through inhibition of oxidative stress-induced reactive oxygen species production and cell permeability. Oxidant molecules hydrogen peroxide and thapsigargin alter unfolded protein response such as glucose-regulated protein 78 (GRP78) and C/EBP homology protein (CHOP) expressions, whereas ZnS-NPs-pre-treated primary MRPE cells downregulated the overexpression of such proteins. The expressions of apoptotic proteins caspase 12 and cleaved caspase 9 and caspase 3 were also significantly controlled in ZnS-NPs-treated primary MRPE cells when comparing with thapsigargin- and hydrogen peroxide-treated cells. From these results, ZnS-NPs stabilize reactive oxygen species elevation, when subjected to hydrogen peroxide- and thapsigargin-mediated oxidant injury and helps in maintaining normal homeostasis through regulating endoplasmic reticulum (ER) stress response proteins which is the lead cause for apoptosis-mediated pathogenesis of AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wills NK, Ramanujam VM, Kalariya N, Lewis JR, Van Kuijk FJ (2008) Copper and zinc distribution in the human retina: relationship to cadmium accumulation, age, and gender. Exp Eye Res 87:80–88

    Article  CAS  PubMed  Google Scholar 

  2. Akagiv T, Kaneda M, Ishii K, Hashikawa T (2001) Differential subcellular localization of zinc in the rat retina. J Histo Chem Cytochem 49:87–96

    Article  Google Scholar 

  3. Ugarte M, Grime GW, Lord G, Geraki K, Collingwood JF, Finnegan ME, Farnfield H, Merchant M, Bailey MJ, Ward NI, et al (2012) Concentration of various trace elements in the rat retina and their distribution in different structures. Metallomics 4:1245–1254

    Article  CAS  PubMed  Google Scholar 

  4. Kokkinou D, Kasper HU, Schwarz T, Bartz-Schmidt KU, Schraermeyer U (2005) Zinc uptake and storage: the role of fundus pigmentation. Graefes Arch Clin Exp Ophthalmol 243:1050–1065

    Article  CAS  PubMed  Google Scholar 

  5. Redenti S, Ripps H, Chappell RL (2007) Zinc release at the synaptic terminals of rod photoreceptors. Exp Eye Res 85:580–584

    Article  CAS  PubMed  Google Scholar 

  6. Ricchelli F, Sileikyte J, Bernardi P (2011) Shedding light on the mitochondrial permeability transition. Biochim Biophys Acta 1807:482–490

    Article  CAS  PubMed  Google Scholar 

  7. Arranz V, Dreuillet C, Crisanti P, Tillit J, Kress M, Ernoult-Lange M (2001) The zinc finger transcription factor, MOK2, negatively modulates expression of the interphotoreceptor retinoid-binding protein gene, IRBP. J Biol Chem 276:11963–11969

    Article  CAS  PubMed  Google Scholar 

  8. Zhang J, Jin Z, Bao ZZ (2004) Disruption of gradient expression of Zic3 resulted in abnormal intra-retinal axon projection. Development 131:1553–1562

    Article  CAS  PubMed  Google Scholar 

  9. Schippert R, Burkhardt E, Feldkaemper M, Schaeffel F (2007) Relative axial myopia in Egr-1 (ZENK) knockout mice. Invest Ophthalmol Visual Sci 48:11–17

    Article  Google Scholar 

  10. Ugarte M, Osborne NN (2014) Recent advances in the understanding of the role of zinc in ocular tissues. Metallomics 6:189–200

    Article  CAS  PubMed  Google Scholar 

  11. Ni Y, Yin G, Hong J, Xu Z (2004) Rapid fabrication and optical properties of zinc sulfidenanocrystallines in a heterogeneous system. Mater Res Bull 39:1967–1972

    Article  CAS  Google Scholar 

  12. Fang X, Zhai T, Gautam UK, Li L, Wu L, Bando Y, Golberg D (2011) ZnS nanostructures: from synthesis to applications. Prog Mater Sci 56:175–287

    Article  CAS  Google Scholar 

  13. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on thedistance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  PubMed  Google Scholar 

  14. Jager RD, Mieler WF, Miller JW (2008) Age-related macular degeneration. N Engl J Med 358:2606–2617

    Article  CAS  PubMed  Google Scholar 

  15. Fritsche LG, Fariss RN, Stambolian D, Abecasis GR, Curcio CA, Swaroop A (2014) Age-related macular degeneration: genetics and biology coming together. Annu Rev Genomics Hum Genet 15:151–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Samiec PS, Drews-Botsch C, Flagg EW, Kurtz Jr. JC, Sternberg P, Reed RL, Jones DP (1998) Glutathione in human plasma: decline in association with aging, age-related macular degeneration, and diabetes. Free Radic Biol Med 24:699–704

    Article  CAS  PubMed  Google Scholar 

  17. Chopdar B, Chakravarthy U, Verma D (2003) Age related macular degeneration. BMJ 326:485–488

    Article  PubMed  PubMed Central  Google Scholar 

  18. Beatty S (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115–134

    Article  CAS  PubMed  Google Scholar 

  19. Winkler BS, Boulton ME, Gottsch JD, Sternberg P (1999) Oxidative damage and age-related macular degeneration. Mol Vis 5:32

    CAS  PubMed  PubMed Central  Google Scholar 

  20. He S, Yaung J, Kim YH, Barron E, Ryan SJ, Hinton DR (2008) Endoplasmic reticulum stress induced by oxidative stress in retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol 246:677–683

    Article  CAS  PubMed  Google Scholar 

  21. Walter L, Hajnoczky G (2005) Mitochondria and endoplasmic reticulum: the lethal interorganelle cross-talk. J Bioenerg Biomembr 37:191–206

    Article  CAS  PubMed  Google Scholar 

  22. Libby RT, Gould DB (2010) Endoplasmic reticulum stress as a primary pathogenic mechanism leading to age-related macular degeneration. Retinal Degenerative Diseases Springer, New York, pp. 403–409

    Google Scholar 

  23. Ron B, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  CAS  PubMed  Google Scholar 

  24. Marciniak SJ, Ron D (2006) Endoplasmic reticulum stress signaling in disease. Physiol Rev 86:1133–1149

    Article  CAS  PubMed  Google Scholar 

  25. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633

    Article  CAS  PubMed  Google Scholar 

  26. Sun Q, Zhong W, Zhang W, Li Q, Sun X, Tan X, Sun X, Dong D, Zhou Z (2015) Zinc deficiency mediates alcohol-induced apoptotic cell death in the liver of rats through activating ER and mitochondrial cell death pathways. Am J Physiol Gastrointest Liver Physiol 308:G757–G766

    Article  CAS  PubMed  Google Scholar 

  27. Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, BarathManiKanth S, Kartikeyan B, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerfaces 77:257–262

    Article  CAS  PubMed  Google Scholar 

  28. Bai HJ, Zhang ZM, Gong J (2006) Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobactersphaeroides. Biotechnol Lett 28:1135–1139

    Article  CAS  PubMed  Google Scholar 

  29. Malarkodi C, Annadurai G (2013) A novel biological approach on extracellular synthesis and characterization of semiconductor zinc sulfide nanoparticles. Appl Nanosci 3:389–395

    Article  CAS  Google Scholar 

  30. Karthikeyan B, Kalishwaralal K, Sheikpranbabu S, Deepak V, Haribalaganesh R, Gurunathan S (2010) Gold nanoparticles down regulate VEGF-and IL-1β-induced cell proliferation through Src kinase in retinal pigment epithelial cells. Exp Eye Res 91:769–778

    Article  CAS  PubMed  Google Scholar 

  31. Karcioglu ZA (1982) Zinc in the eye. Surv Ophthalmol 27:114–122

    Article  CAS  PubMed  Google Scholar 

  32. Lee JM, Lee JM, Kim KR, Im H, Kim YH (2015) Zinc preconditioning protects against neuronal apoptosis through the mitogen-activated protein kinase-mediated induction of heat shock protein 70. Biochem Biophys Res Commun 459:220–226

    Article  CAS  PubMed  Google Scholar 

  33. Willis MS, Monaghan SA, Miller ML, McKenna RW, Perkins WD, Levinson BS, Bhusan V, Kroft SH (2005) Zinc-induced copper deficiency a report of three cases initially recognized on bone marrow examination. Am J Clin Pathol 123:125–131

    Article  PubMed  Google Scholar 

  34. Fadeel B (2013) Nanosafety towards safer design of nanomedicines. J Intern Med 274:578–580

    Article  CAS  PubMed  Google Scholar 

  35. Mao L, Chen J, Peng Q, Zhou A, Wang Z (2013) Effects of different sources and levels of zinc on H2O2-induced apoptosis in IEC-6 cells. Biol Trace Elem Res 155:132–141

    Article  CAS  PubMed  Google Scholar 

  36. Clark A, Zhu A, Sun K, Petty HR (2011) Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis. J Nanoparticle Res 13:5547–5555

    Article  CAS  Google Scholar 

  37. Schubert D, Dargusch R, Raitano J, Chan SW (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342:86–91

    Article  CAS  PubMed  Google Scholar 

  38. Mitra RN, Merwin MJ, Han Z (2014) Yttrium oxide nanoparticles prevent photoreceptor death in a light-damage model of retinal degeneration. Free RadicBiol Med 75:140–148

    Article  CAS  Google Scholar 

  39. Erie JC, Good JA, Butz JA, Pulido JS (2009) Reduced zinc and copper in the retinal pigment epithelium and choroid in age-related macular degeneration. Am J Ophthalmol 147:276–282

    Article  CAS  PubMed  Google Scholar 

  40. Bailey TA, Kanuga N, Romero IA, Greenwood J, Luthert PJ, Cheetham ME (2004) Oxidative stress affects the junctional integrity of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 45:675–684

    Article  PubMed  Google Scholar 

  41. Ho TC, Yang YC, Cheng HC, Wu AC, Chen SL, Tsao YP (2006) Pigment epithelium-derived factor protects retinal pigment epithelium from oxidant-mediated barrier dysfunction. Biochem Biophys Res Commun 342:372–378

    Article  CAS  PubMed  Google Scholar 

  42. Miura Y, Roider J (2009) Triamcinolone acetonide prevents oxidative stress-induced tight junction disruption of retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol 247:641–649

    Article  CAS  PubMed  Google Scholar 

  43. Kim JH, Kim JH, Kim KW, Kim MH, Yu YS (2009) Intravenously administered gold nanoparticles pass through the blood–retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology 20:505101

    Article  PubMed  Google Scholar 

  44. Cai J, Nelson KC, Wu Jr M, Sternberg P, Jones DP (2000) Oxidative damage and protection of the RPE. Prog Retin Eye Res 19:205–221

    Article  CAS  PubMed  Google Scholar 

  45. Chen J, Patil S, Seal S, McGinnins JF (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1:142–150

    Article  CAS  PubMed  Google Scholar 

  46. Yao L, Du Q, Yao H, Chen X, Zhang Z, Xu S (2015) Roles of oxidative stress and endoplasmic reticulum stress in selenium deficiency-induced apoptosis in chicken liver. Biometals 28:255–265

    Article  CAS  PubMed  Google Scholar 

  47. Gardner BM, Walter P (2011) Unfolded proteins are ire1-activating ligands that directly induce the unfolded protein response and auto phosphorylation of these proteins and activated apoptotic cascade. Science 333:1891–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang SX, Sanders E, Fliesler SJ, Wang JJ (2014) Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration. Exp Eye Res 125:30–40

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid from Department of Science and Technology (SERB) of India (SB/FT/LS-204/2012 to T. K). B.K. is the recipient of senior research fellowship (09/ 1012 (0005) 2 K11 – EMR – I) from the Council of Scientific and Industrial Research (CSIR), India.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thandavarayan Kathiresan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthikeyan, B., Arun, A., Harini, L. et al. Role of ZnS Nanoparticles on Endoplasmic Reticulum Stress-mediated Apoptosis in Retinal Pigment Epithelial Cells. Biol Trace Elem Res 170, 390–400 (2016). https://doi.org/10.1007/s12011-015-0493-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0493-2

Keywords

Navigation