Skip to main content
Log in

Effects of 3,5-Diiodotyrosine and Potassium Iodide on Thyroid Function and Oxidative Stress in Iodine-Excess Wistar Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the effects of organic iodine (3,5-diiodotyrosine, DIT) and inorganic iodine (potassium iodine, KI) on thyroid function and oxidative stress in iodine-excess Wistar rats. Seventy-two Wistar rats were randomly divided into eight groups: normal control (NC), thyroid tablet-induced hyperthyroidism model (HM), low DIT (L-DIT), medium DIT (M-DIT), high DIT (H-DIT), low KI (L-KI), medium KI (M-KI), and high KI (H-KI). All rats were fed ad libitum for 30 days. Morphological changes in the thyroid, absolute and relative weights of the thyroid, thyroid function markers free triiodothyronine (FT3) and free thyroxine (FT4), urinary iodine level, and oxidative stress indicators were measured. Compared to the HM groups, the FT3 and FT4 levels decreased in the L-DIT groups; the thyroid weight and thyroid weight/body weight values decreased markedly in the L-DIT and M-DIT groups; serum superoxide dismutase/malondialdehyde increased markedly; glutathione peroxidase activity increased markedly in the L-DIT groups; and malondialdehyde levels decreased significantly in the M-DIT groups. However, the FT3 and FT4 levels decreased and glutathione peroxidase levels increased significantly in the DIT groups compared to their corresponding KI groups. Additionally, urinary iodine levels increased significantly in both DIT and KI groups, while the highest urinary iodine excretion was showed in the DIT groups among groups. When the addition of iodine with the same doses in iodine-excess rats, although neither DIT nor KI normalized iodine levels in the iodine-excess rats, the DIT did less damage than did KI to thyroid follicular cells. Therefore, DIT rather than KI had a protective effect by balancing the antioxidant system when exposed to supraphysiological iodine. These suggest that DIT may be used as a new alternative iodized salt in the universal salt iodization to avoid the potential damage of surplus KI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vanderpump M (2014) Thyroid and iodine nutritional status: a UK perspective. Clin Med 14(Suppl 6):s7–s11. doi:10.7861/clinmedicine.14-6-s7

    Article  PubMed  Google Scholar 

  2. Delange F, Lecomte P (2000) Iodine supplementation: benefits outweigh risks. Drug Saf 22:89–95

    Article  CAS  PubMed  Google Scholar 

  3. Leung AM, Braverman LE (2014) Consequences of excess iodine. Nat Rev Endocrinol 10:136–142. doi:10.1038/nrendo.2013.251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Garcia-Fuentes E, Gallo M, Garcia L et al (2008) Amniotic fluid iodine concentrations do not vary in pregnant women with varying iodine intake. Br J Nutr 99:1178–1181. doi:10.1017/ s00071145078 62398

    Article  CAS  PubMed  Google Scholar 

  5. Konno N, Yuri K, Taguchi H, Miura K et al (1993) Screening for thyroid diseases in an iodine sufficient area with sensitive thyrotrophin assays, and serum thyroid autoantibody and urinary iodide determinations. Clin Endocrinol (Oxf) 38:273–281

    Article  CAS  Google Scholar 

  6. Smyth PP (2003) Role of iodine in antioxidant defence in thyroid and breast disease. Biofactors 19(3–4):121–130

    Article  CAS  PubMed  Google Scholar 

  7. Soriguer F, Gutierrez-Repiso C, Rubio-Martin E et al (2011) Iodine intakes of 100–300 mug/d do not modify thyroid function and have modest anti-inflammatory effects. Br J Nutr 105(12):1783–1790. doi:10.1017/s0007114510005568

    Article  CAS  PubMed  Google Scholar 

  8. Kupper FC, Carpenter LJ, Leblanc C et al (2013) In vivo speciation studies and antioxidant properties of bromine in Laminaria digitata reinforce the significance of iodine accumulation for kelps. J Exp Bot 64(10):2653–2664. doi:10.1093/jxb/ert110

    Article  PubMed Central  PubMed  Google Scholar 

  9. Doerge DR, Taurog A, Dorris ML (1994) Evidence for a radical mechanism in peroxidase-catalyzed coupling. II. Single turnover experiments with horseradish peroxidase. Arch Biochem Biophys 315(1):90–99. doi:10.1006/abbi.1994.1475

    Article  CAS  PubMed  Google Scholar 

  10. Aceves C, Anguiano B, Delgado G (2013) The extrathyronine actions of iodine as antioxidant, apoptotic, and differentiation factor in various tissues. Thyroid 23(23):938–946. doi:10.1089/thy.2012. 0579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Fisher DA, Oddie TH (1969) Thyroidal radioiodine clearance and thyroid iodine accumulation: contrast between random daily variation and population data. J Clin Endocrinol Metab 29:111–115. doi:10.1210/jcem-29-1-111

    Article  CAS  PubMed  Google Scholar 

  12. Trumbo PR (2013) Evidence needed to inform the next dietary reference intakes for iodine. Adv Nutr 4:718–722. doi:10.3945/an.113.004804

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Subudhi U, Das K, Paital B et al (2008) Alleviation of enhanced oxidative stress and oxygen consumption of L-thyroxine induced hyperthyroid rat liver mitochondria by vitamin E and curcumin. Chem Biol Interact 173:105–114. doi:10.1016/j.cbi.2008.02.005

    Article  CAS  PubMed  Google Scholar 

  14. Kumar N, Kar A, Panda S (2014) Pyrroloquinoline quinone ameliorates l-thyroxine-induced hyperthyroidism and associated problems in rats. Cell Biochem Funct 32:538–546. doi:10.1002/cbf.3048

    Article  CAS  PubMed  Google Scholar 

  15. Xia Y, Qu W, Zhao LN et al (2013) Iodine excess induces hepatic steatosis through disturbance of thyroid hormone metabolism involving oxidative stress in BALB/c mice. Biol Trace Elem Res 154:103–110. doi:10.1007/s12011-013-9705-9

    Article  CAS  PubMed  Google Scholar 

  16. Ladenson PW, Kieffer JD, Farwell AP et al (1986) Modulation of myocardial L-triiodothyronine receptors in normal, hypothyroid, and hyperthyroid rats. Metabolism 35:5–12

    Article  CAS  PubMed  Google Scholar 

  17. Araujo AS, Ribeiro MF, Enzveiler A et al (2006) Myocardial antioxidant enzyme activities and concentration and glutathione metabolism in experimental hyperthyroidism. Mol Cell Endocrinol 249:133–139. doi:10.1016/j.mce.2006.02.005

    Article  CAS  PubMed  Google Scholar 

  18. Carter WJ, Benjamin WS, Faas FH (1982) Effects of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle as measured by [14C]tyrosine infusion. Biochem J 204:69–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. De La Vieja A, Dohan O, Levy O et al (2000) Molecular analysis of the sodium/iodide symporter: impact on thyroid and extrathyroid pathophysiology. Physiol Rev 80(3):1083–1105

    Google Scholar 

  20. Mostbeck A, Galvan G, Bauer P et al (1998) The incidence of hyperthyroidism in Austria from 1987 to 1995 before and after an increase in salt iodization in 1990. Eur J Nucl Med 25(4):367–374

    Article  CAS  PubMed  Google Scholar 

  21. Gao T, Shi R, Qi T et al (2014) A comparative study on the effects of excess iodine and herbs with excess iodine on thyroid oxidative stress in iodine-deficient rats. Biol Trace Elem Res 157:130–137. doi:10.1007/s12011-013-9873-7

    Article  CAS  PubMed  Google Scholar 

  22. Joanta AE, Filip A, Clichici S et al (2006) Iodide excess exerts oxidative stress in some target tissues of the thyroid hormones. Acta Physiol Hung 93:347–359. doi:10.1556/APhysiol.93.2006.4.11

    Article  CAS  PubMed  Google Scholar 

  23. Fernandez V, Barrientos X, Kipreos K et al (1985) Superoxide radical generation, NADPH oxidase activity, and cytochrome P-450 content of rat liver microsomal fractions in an experimental hyperthyroid state: relation to lipid peroxidation. Endocrinology 117:496–501. doi:10.1210/endo- 117-2-496

    Article  CAS  PubMed  Google Scholar 

  24. Gutierrez-Repiso C, Velasco I, Garcia-Escobar E et al (2014) Does dietary iodine regulate oxidative stress and adiponectin levels in human breast milk? Antioxid Redox Signal 20(5):847–853. doi:10.1089/ars.2013.5554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Glatt CM, Ouyang M, Welsh W et al (2005) Molecular characterization of thyroid toxicity: anchoring gene expression profiles to biochemical and pathologic end points. Environ Health Perspect 113(10):1354–1361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Health Department of Shandong Province, China (no. 2001CA1AA18) and National Natural Science Foundation (NSFC 81370966) of China.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinying Lin or Xia Wang.

Glossary

KI

Potassium iodine

DIT

3,5-diiodotyrosine

GSH-Px

Glutathione peroxidase

SOD

Superoxide dismutase

MDA

Malondialdehyde

FT3

Free triiodothyronine

FT4

Free thyroxine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Lin, X., Yu, F. et al. Effects of 3,5-Diiodotyrosine and Potassium Iodide on Thyroid Function and Oxidative Stress in Iodine-Excess Wistar Rats. Biol Trace Elem Res 168, 447–452 (2015). https://doi.org/10.1007/s12011-015-0371-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0371-y

Keywords

Navigation