Skip to main content
Log in

Arsenic Concentrations and Associated Health Risks in Laccaria Mushrooms from Yunnan (SW China)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

An Erratum to this article was published on 17 April 2015

Abstract

Some species of Laccaria have been known to contain relatively high levels of arsenic in Europe and are used as edible mushrooms in the southwest China. One population of Laccaria proxima and one population of L. vinaceoavellanea as well as topsoil (0–10 cm) they grew on were collected from natural habitats of Yunnan (SW China), while other samples such as Laccaria mushroom samples without soil were purchased from four different local markets in Yunnan. Concentrations of arsenic were determined in fruit bodies of the mushrooms and in the soils by using atomic fluorescence spectrometry to assess potential health risks of these species. The mean arsenic concentrations in caps were 135, 14.1–143, 5.5 and 130–163 mg kg−1 dry weight (dw) for Laccaria amethystina, Laccaria laccata, L. proxima and L. vinaceoavellanea, respectively. The mean value for bioconcentration factor of arsenic in caps of L. vinaceoavellanea was 29.1 for soil with arsenic content at 5.6 mg kg−1 dw, which indicate that L. vinaceoavellanea is an accumulator for arsenic. Caps of L. amethystina, L. laccata and L. vinaceoavellanea consumed at a volume of 300 g fresh weight for a single meal in a week can yield an exposure amount of arsenic at 4.1, 0.42–4.3 and 3.9–4.9 mg, respectively. These values are higher than the limit dose for the intake of inorganic arsenic recommended by the Joint FAO/WHO Expert Committee on Food Additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Falandysz J, Borovička J (2013) Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol 97:477–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Wang XM, Zhang J, Wu LH, Zhao YL, Li T, Li JQ, Wang YZ, Liu HG (2014) A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chem 151:279–285

    Article  CAS  PubMed  Google Scholar 

  3. Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Ann Rev Microbiol 60:107–130

    Article  CAS  Google Scholar 

  4. Bolan NS, Choppala G, Kunhikrishnan A, Park J, Naidu R (2013) Microbial transformation of trace elements in soils in relation to bioavailability and remediation. Rev Environ Contam Toxic 225:1–56

    CAS  Google Scholar 

  5. Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    Article  CAS  Google Scholar 

  7. Gadd GM, Rhee YJ, Stephenson K, Wei Z (2012) Geomycology: metals, actinides and biominerals. Environ Microbiol Rep 4:270–296

    Article  CAS  PubMed  Google Scholar 

  8. Guillén J, Baeza A (2014) Radioactivity in mushrooms: a health hazard? Food Chem 154:14–25

    Article  PubMed  Google Scholar 

  9. Chen XH, Zhou HB, Qiu GZ (2009) Analysis of several heavy metals in wild edible mushrooms from regions of China. Bull Environ Contam Toxical 83:280–285

    Article  CAS  Google Scholar 

  10. Gonzálvez A, Llorens A, Cervera ML, Armenta S, de la Guardia M (2009) Non-chromatographic speciation of inorganic arsenic in mushrooms by hydride generation atomic fluorescence spectrometry. Food Chem 115:360–364

    Article  Google Scholar 

  11. Huang CY, Chen Q, Zhao YC, Zhang JX (2010) Investigation on heavy metals of main wild edible mushrooms in Yunnan Province. Sci Agric Sinica 43:1207–1212

    Google Scholar 

  12. Li T, Wang Y, Zhang J, Zhao YL, Liu HG (2011) Trace element content of Boletus tomentipes mushroom collected from Yunnan, China. Food Chem 127:1828–1830

    Article  CAS  Google Scholar 

  13. Zhang D, Gao T, Ma P, Luo Y, Su P (2008) Bioaccumulation of heavy metal in wild growing mushrooms from Liangshan Yi nationality autonomous prefecture, China. Wuhan Univ J Nat Sci 13:267–272

    Article  CAS  Google Scholar 

  14. Zhang D, Zheng Y, Luo Y (2004) Analysis of heavy metals in some wild edible mushrooms from mountains in Sichuan and Yunnan. J Mount Sci 22:767–771

    Google Scholar 

  15. Fang Y, Sun X, Yang W, Ma N, Xin Z, Fu J, Liu X, Liu M, Mariga AM, Zhu X, Hu Q (2014) Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chem 147:147–151

    Article  CAS  PubMed  Google Scholar 

  16. Yin LL, Shi GQ, Tian Q, Shen T, Ji YQ, Zeng G (2012) Determination of the metals by ICP-MS in wild mushrooms from Yunnan, China. J Food Sci 77:T151–T155

    Article  CAS  PubMed  Google Scholar 

  17. Kalač P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281

    Article  Google Scholar 

  18. Byrne AR, Tušek-Žnidarič M (1983) Arsenic accumulation in the mushroom Laccaria amethystina. Chemosphere 12:1113–1117

    Article  CAS  Google Scholar 

  19. Vetter J (2004) Arsenic content of some edible mushroom species. Eur Food Res Technol 219:71–74

    Article  CAS  Google Scholar 

  20. Larsen EH, Hansen M, Gössler W (1998) Speciation and health risk considerations of arsenic in the edible mushroom Laccaria amethystina collected from contaminated and uncontaminated locations. Appl Organomet Chem 12:285–291

    Article  CAS  Google Scholar 

  21. Wang XH, Liu PG, Yu FQ (2004) Color atlas of wild commercial mushrooms in Yunnan. Yunnan Science and Technology Press, Kunming

    Google Scholar 

  22. Liu YT, Sun J, Luo ZY, Rao SQ, Su YJ, Xu RR, Yang YJ (2012) Chemical composition of five wild edible mushrooms collected from Southwest China and their antihyperglycemic and antioxidant activity. Food Chem Toxicol 50:1238–1244

    Article  CAS  PubMed  Google Scholar 

  23. Mao XL (2000) The macrofungi of China Henan Science and Technology Press, Zhengzhou

  24. Byrne AR, Tušek-Žnidarič M, Puri BK, Irgolic KJ (1991) Studies of the uptake and binding of trace metals in fungi Part II Arsenic compounds in Laccaria amethystina. Appl Organomet Chem 5:25–32

    Article  CAS  Google Scholar 

  25. Byrne AR, Šlejkovec Z, Stijve T, Fay L, Gössler W, Gailer J, Lrgolic KJ (1995) Arsenobetaine and other arsenic species in mushrooms. Appl Organomet Chem 9:305–313

    Article  CAS  Google Scholar 

  26. Parisis NE, Van den Heede MA (1992) Antimony uptake and correlation with other metals in mushroom species. Toxicol Environ Chem 36:205–216

    Article  CAS  Google Scholar 

  27. Šlejkovec Z, Byrne AR, Stijve T, Goessler W, Irgolic KJ (1997) Arsenic compounds in higher fungi. Appl Organomet Chem 11:673–682

    Article  Google Scholar 

  28. Ayaz FA, Torun H, Colak A, Sesli E, Millson M, Glew RH (2011) Macro- and microelement contents of fruiting bodies of wild-edible mushrooms growing in the east Black Sea region of Turkey. Food Nutr Sci 2:53–59

    Article  CAS  Google Scholar 

  29. Cocchi L, Vescovi L, Petrini LE, Petrini O (2006) Heavy metals in edible mushrooms in Italy. Food Chem 98:277–284

    Article  CAS  Google Scholar 

  30. Demirbaş A (2001) Concentrations of 21 metals in 18 species of mushrooms growing in the East Black Sea region. Food Chem 75:453–457

    Article  Google Scholar 

  31. Slekovec M, Irgolic KJ (1996) Uptake of arsenic by mushrooms from soil. Chem Spec Bioavailab 8:67–73

    CAS  Google Scholar 

  32. CNEMC (China National Environmental Monitoring Center) (1990) The background values of soil elements in China. Chinese Environment Science Press, Beijing

    Google Scholar 

  33. Falandysz J, Kojta AK, Jarzyńska G, Drewnowska M, Dryżałowska A, Wydmańska D, Kowalewska I, Wacko A, Szlosowska M, Kannan K, Szeferc P (2012) Mercury in bay bolete (Xerocomus badius): bioconcentration by fungus and assessment of element intake by humans eating fruiting bodies. Food Addit Contam A 29:951–961

    Article  CAS  Google Scholar 

  34. Kalač P (2010) Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem 122:2–15

    Article  Google Scholar 

  35. Melgar MJ, Alonso J, García MA (2014) Total contents of arsenic and associated health risks in edible mushrooms, mushroom supplements and growth substrates from Galicia (NW Spain). Food Chem Toxicol 73:44–50

    Article  CAS  PubMed  Google Scholar 

  36. JECFA (2010) Joint FAO/WHO Expert Committee on Food Additives seventy-second meeting Rome, 16–25 February 2010 Summary and Conclusions JECFA/72/SC Food and Agriculture Organization of the United Nations World Health Organization

  37. Dembitsky VM, Rezanka T (2003) Natural occurrence of arseno compounds in plants, lichens, fungi, algal species, and microorganisms. Plant Sci 165:1177–1192

    Article  CAS  Google Scholar 

  38. Niedzielski P, Mleczek M, Magdziak Z, Siwulski M, Kozak L (2013) Selected arsenic species: As(III), As(V) and dimethylarsinic acid (DMAA) in Xerocomus badius fruiting bodies. Food Chem 141:3571–3577

    Article  CAS  PubMed  Google Scholar 

  39. Llorente-Mirandes T, Barbero M, Rubio R, López-Sánchez JF (2014) Occurrence of inorganic arsenic in edible Shiitake (Lentinula edodes) products. Food Chem 158:207–215

    Article  CAS  PubMed  Google Scholar 

  40. Slekovec M, Goessler W, Irgolic KJ (1999) Inorganic and organic arsenic compounds in Slovenian mushrooms: comparison of arsenic-specific detectors for liquid chromatography. Chem Spec Bioavailab 11:115–123

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has been supported by the National Natural Science Foundation of China (31460538, 31260496), the Special Project on the Countryside Comprehensive Reform (2014NG007-18) and the Yunnan Provincial Natural Science Foundation (2013FZ150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Zhong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, T., Yang, YL. et al. Arsenic Concentrations and Associated Health Risks in Laccaria Mushrooms from Yunnan (SW China). Biol Trace Elem Res 164, 261–266 (2015). https://doi.org/10.1007/s12011-014-0213-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0213-3

Keywords

Navigation