Skip to main content

Advertisement

Log in

Effect of Iron Supplementation on the Expression of Hypoxia-Inducible Factor and Antioxidant Status in Rats Exposed to High-Altitude Hypoxia Environment

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Iron and oxygen are essential substance for cellular activity in body tissues. Hypoxia-inducible factors (HIFs) can respond to available oxygen changes in the cellular environment and regulate the transcription of a series of target genes. The study was conducted to investigate the effects of iron supplementation on the expression of hypoxia-inducible factor-1 alpha (HIF-1α) and antioxidant status in rats exposed to high-altitude hypoxia environment. Forty rats were divided into control (CON), hypobaric hypoxia (HH), and hypobaric hypoxia plus ferrous sulfate (FeSO4) (9.93 mg/kg body weight (BW)/day) (HFS) and hypobaric hypoxia plus iron glycinate chelate (Fe-Gly) (11.76 mg/kg BW/day) (HFG) groups. Results showed that Fe-Gly effectively alleviated weight loss and intestinal mucosa damage induced by hypobaric hypoxia, whereas FeSO4 aggravated hypobaric hypoxia-induced weight loss, liver enlargement, spleen atrophy, and intestinal damage. Iron supplementation decreased liver superoxide dismutase (T-SOD) and catalase (CAT) activity (P < 0.01) and increased iron concentration in the liver compared to HH group (P < 0.001). Moreover, Fe-Gly upregulated liver transferrin expression in messenger RNA (mRNA) level (P < 0.05) and downregulated serum erythropoietin (EPO) concentration (P < 0.01) and liver HIF-1α expression level (P < 0.05 in mRNA level; P < 0.001 in protein level) compared to HH group. The study indicated that FeSO4 supplementation at high altitudes aggravated the oxidative damage of tissues and organs that could be mediated through production of malondialdehyde (MDA) and inhibition antioxidant enzyme activities. Fe-Gly can protect hypobaric hypoxia-induced tissues injury. Moreover, iron supplementation at high altitudes affected HIF-1α-mediated regulating expression of targeting genes such as EPO and transferrin. The study highlights that iron supplementation under hypobaric hypoxia environment has possible limitation, and efficient supplementation form and dosage need careful consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HIFs:

Hypoxia-inducible factors

HIF-1α:

Hypoxia-inducible factor-1 alpha

MDA:

Malondialdehyde

SOD:

Superoxide dismutase

ROS:

Reactive oxygen species

EPO:

Erythropoietin

CAT:

Catalase

FeSO4 :

Ferrous sulfate

Fe-Gly:

Iron glycinate chelate

References

  1. Sherpa LY, Stigum H, Chongsuvivatwong V, Thelle DS, Bjertness E (2010) Obesity in Tibetans aged 30–70 living at different altitudes under the north and south faces of Mt. Everest. Int J Environ Res Public Health 7:1670–1680

    Article  PubMed Central  PubMed  Google Scholar 

  2. Windsor JS, Rodway GW (2007) Heights and haematology: the story of haemoglobin at altitude. Postgrad Med J 83:148–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Peyssonnaux C, Nizet V, Johnson RS (2008) Role of the hypoxia inducible factors in iron metabolism. Cell Cycle 7:28–32

    Article  CAS  PubMed  Google Scholar 

  4. Taylor DM, Vassar PS (1956) Effects of hypoxia on iron absorption in rats. Proc Soc Exp Biol Med 93:504–506

    Article  CAS  PubMed  Google Scholar 

  5. Krantz S, Goldwasser E, Jacobson LO (1959) Studies on erythropoiesis. XIV. The relationship of humoral stimulation to iron absorption. Blood 14:654–661

    CAS  PubMed  Google Scholar 

  6. Strohmeyer GW, Miller SA, Scarlata RW, Moore EW, Greenberg MS, Chalmers TC (1964) Effects of hypoxia on iron absorption and mobilization in the rat. Am J Physiol 207:55–61

    CAS  PubMed  Google Scholar 

  7. Reynafarje C, Lozano R, Valdivieso J (1959) The polycythemia of high altitudes: iron metabolism and related aspects. Blood 14:433–455

    CAS  PubMed  Google Scholar 

  8. Abou-Zeid AH, Abdel-Fattah MM, AI-Shehri AS, Hifnawy TM, AI-Hassan SA (2006) Anemia and nutritional status of schoolchildren living at Saudi high altitude area. Saudi Med J 27:862–869

    PubMed  Google Scholar 

  9. Salama SA, Omar HA, Maghrabi IA, AISaeed MS, EL-Tarras AE (2014) Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats. Toxicol Appl Pharm 274:1–6

    Article  CAS  Google Scholar 

  10. Henry PR, Miller ER (1995) Iron availability. In: Ammerman CB, Baker DH, Lewis AS (eds) Bioavailability of nutrients for animals. Academic, San Diego, pp 169–199

    Chapter  Google Scholar 

  11. Giorgini E, Fisberg M, Paula RA, Ferreira AM, Valle J, Braga JA (2001) The use of sweet rolls fortified with iron bisglycinate chelate in the prevention of iron deficiency anemia in preschool children. Arch Latinoam Nutr 51:48–53

    CAS  PubMed  Google Scholar 

  12. Chepelev NL, Willmore WG (2011) Regulation of iron pathways in response to hypoxia. Free Radic Biol Med 50:645–666

    Article  CAS  PubMed  Google Scholar 

  13. Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH, Johnson RS (2007) Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest 117:1926–1932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Shah YM, Matsubara T, Ito S, Yim SH, Gonzalez FJ (2009) Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab 9:152–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lee DW, Andersen JK (2006) Role of HIF-1 in iron regulation: potential therapeutic strategy for neurodegenerative disorders. Curr Mol Med 6:883–893

    Article  CAS  PubMed  Google Scholar 

  16. Leung PS, Srai SK, Mascarenhas M, Churchill LJ, Debnam ES (2005) Increased duodenal iron uptake and transfer in a rat model of chronic hypoxia is accompanied by reduced hepcidin expression. Gut 54:1391–1395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hershko C, Link G, Pinson A (1987) Modification of iron uptake and lipid peroxidation by hypoxia, ascorbic acid, and α-tocopherol in iron-loaded rat myocardial cell cultures. J Lab Clin Med 110:355–361

    CAS  PubMed  Google Scholar 

  18. Merle U, Fein E, Gehrke SG, Stremmel W, Kulaksiz H (2007) The iron regulatory peptide hepcidin is expressed in the heart and regulated by hypoxia and inflammation. Endocrinol 148:2663–2668

    Article  CAS  Google Scholar 

  19. Galaris D, Pantopoulos K (2008) Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit Rev Clin Lab Sci 45:1–23

    Article  CAS  PubMed  Google Scholar 

  20. Mendes JF, Arruda SF, Siqueira EM, Ito MK, Silva EF (2009) Iron status and oxidative stress biomarkers in adults: a preliminary study. Nutrition 25:379–384

    Article  CAS  PubMed  Google Scholar 

  21. Rouault TA, Klausner RD (1996) Iron-sulfur clusters as biosensors of oxidants and iron. Trends Biochem Sci 21:174–177

    Article  CAS  PubMed  Google Scholar 

  22. Gutteridge JMC, Rowley DA, Halliwell B (1982) Superoxide-dependent formation of hydroxyl radical and lipid peroxidation in the presence of iron salt: detection of catalytic iron and antioxidant activity in extracellular fluids. J Biochem 206:605–609

    CAS  Google Scholar 

  23. Carine F, Valerie M, David D, Monique B, Jean-Claude B, Genevieve S, Annick P (1999) Lactoferrin is synthesized by mouse brain tissue and its expression is enhanced after MPTP treatment. Mol Brain Res 72:183–194

    Article  Google Scholar 

  24. Xu CL, Sun R, Qiao XJ, Xu CC, Shang XY, Niu WN (2014) Protective effect of glutamine on intestinal injury and bacterial community in rats exposed to hypobaric hypoxia environment. World J Gastroenterol 20:4662–4674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Mena S, Ortega A, Estrela JM (2009) Oxidative stress in environment-induced carcinogenesis. Mutat Res 674:36–44

    Article  CAS  PubMed  Google Scholar 

  26. Dosek A, Ohno H, Acs Z, Taylor AW, Radak Z (2007) High altitude and oxidative stress. Respir Physiol Neurobiol 158:128–131.27

    Article  CAS  PubMed  Google Scholar 

  27. Devi SA, Vani R, Subramanyam MVV, Reddy SS, Jeevaratnam K (2007) Intermittent hypobaric hypoxia-induced oxidative stress in rat erythrocytes: protective effects of vitamin E, vitamin C, and carnitine. Cell Biochem Funct 25:221–231

    Article  CAS  PubMed  Google Scholar 

  28. Udayabanu M, Kumaran D, Nair RU, Srinivas P, Bhagat N, Aneja R, Katyal A (2008) Nitric oxide associated with iNOS expression inhibits acetylcholinesterase activity and induces memory impairment during acute hypobaric hypoxia. Brain Res 1230:138–149

    Article  CAS  PubMed  Google Scholar 

  29. Maiti P, Singh SB, Sharma AK, Muthuraju S, Banerjee PK, Ilavazhagan G (2006) Hypobaric hypoxia induces oxidative stress in rat brain. Neurochem Int 49:709–716

    Article  CAS  PubMed  Google Scholar 

  30. Uzun FG, Demir F, Kalender S, Bas H, Kalender Y (2010) Protective effect of catechin and quercetin on chlorpyrifos-induced lung toxicity in male rats. Food Chem Toxicol 48:1714–1720

    Article  CAS  PubMed  Google Scholar 

  31. Simpson RJ (1996) Dietary iron levels and hypoxia independently affect iron absorption in mice. J Nutr 126:1858–1864

    CAS  PubMed  Google Scholar 

  32. Grocott MP, Martin DS, Levett DZ, McMorrow R, Windsor J, Montgomery HE (2009) Arterial blood gases and oxygen content in climbers on Mount Everest. N Engl J Med 360:140–149

    Article  CAS  PubMed  Google Scholar 

  33. Rankin EB, Biju MP, Liu Q, Unger TL, Rha J, Johnson RS, Haase VH (2007) Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J Clin Invest 117:1068–1077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Vigano A, Ripamonti M, De Palma S, Capitanio D, Vasso M, Wait R, Gelfi C (2008) Proteins modulation in human skeletal muscle in the early phase of adaptation to hypobaric hypoxia. Proteomics 8:4668–4679

    Article  CAS  PubMed  Google Scholar 

  35. Hamlin MJ, Marshall HC, Hellemans J, Ainslie PN, Anglem N (2010) Effect of intermittent hypoxic training on 20 km time trial and 30 s anaerobic performance. Scand J Med Sci Sports 20:651–661

    Article  CAS  PubMed  Google Scholar 

  36. Diez-Caballero F, Castilla-Cortázar I, Garcia-Fernandez M, Puche JE, Diaz-Sanchez M, Casares AD, Gonzalez-Barón S (2006) Little effects of insulin-like growth factor-I on testicular atrophy induced by hypoxia. BMC Urol 6:4

    Article  PubMed Central  PubMed  Google Scholar 

  37. Ge RL, Witkowski S, Zhang Y, Alfrey C, Sivieri M, Karlsen T, Levine BD (2002) Determinants of erythropoietin release in response to short-term hypobaric hypoxia. J Appl Physiol 92:2361–2367

    CAS  PubMed  Google Scholar 

  38. Beall CM, Decker MJ, Brittenham GM, Kushner I, Gebremedhin A, Strohl KP (2002) An Ethiopian pattern of human adaptation to high-altitude hypoxia. PNAS 99:17215–17218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Savourey G, Launay JC, Besnard Y, Guinet A, Bourrilhon C, Cabane D, Cottet-Emard JM (2004) Control of erythropoiesis after high altitude acclimatization. Eur J Appl Physiol 93:47–56

    Article  CAS  PubMed  Google Scholar 

  40. Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578

    Article  CAS  PubMed  Google Scholar 

  41. Basu M, Malhotra AS, Pal K, Prasad R, Kumar R, Prasad BA, Sawhney RC (2007) Erythropoietin levels in lowlanders and high altitude natives at 3450 m. Aviat Space Environ Med 78:963–967

    Article  CAS  PubMed  Google Scholar 

  42. Fedele AO, Whitelaw ML, Peet DJ (2002) Regulation of gene expression by the hypoxia-inducible factors. Mol Interv 2:229–243

    Article  CAS  PubMed  Google Scholar 

  43. Höpfl G, Ogunshola O, Gassmann M (2003) Hypoxia and high altitude. The molecular response. Adv Exp Med Biol 543:89–115

    Article  PubMed  Google Scholar 

  44. Zamudio S, Wu Y, Ietta F, Rolfo A, Cross A, Wheeler T, Post M, Illsley NP, Caniggia I (2007) Human placental hypoxia-inducible factor-1 alpha expression correlates with clinical outcomes in chronic hypoxia in vivo. Am J Pathol 170:2171–2179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology 24:97–106

    Article  CAS  PubMed  Google Scholar 

  46. Fang CL, Zhuo Z, Fang SL, Yue M, Feng J (2013) Iron sources on iron status and gene expression of iron related transporters in iron-deficient piglets. Anim Feed Sci Technol 182:121–125

    Article  CAS  Google Scholar 

  47. Tapiero H, Gate L, Tew KD (2001) Iron: deficiencies and requirements. Biomed Pharmacother 55:324–332

    Article  CAS  PubMed  Google Scholar 

  48. Pineda O, Ashmead HD (2001) Effectiveness of treatment of iron-deficiency anemia in infants and young children with ferrous bis-glycinate chelate. Nutrition 17:381–384

    Article  CAS  PubMed  Google Scholar 

  49. Mimura ÉCM, Breganó JW, Dichi JB, Gregório EP, Dichi I (2008) Comparison of ferrous sulfate and ferrous glycinate chelate for the treatment of iron deficiency anemia in gastrectomized patients. Nutrition 24:663–668

    Article  CAS  PubMed  Google Scholar 

  50. da Silva LF, Dutra-de-Oliveira JE, Marchini JS (2004) Serum iron analysis of adults receiving three different iron compounds. Nutr Res 24:603–611

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the National Natural Science Foundation of China (No. 31001012 and No. 31101304), Programs for Agricultural Science and Technology Development of Shaanxi Province, China (No. 2013K02-16), and National College Students Innovation, Experiment Program (No. 201210699118). We are grateful to Rui Sun for her technical help.

Conflict of Interest

The authors have declared that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlan Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Dong, C., Xu, C. et al. Effect of Iron Supplementation on the Expression of Hypoxia-Inducible Factor and Antioxidant Status in Rats Exposed to High-Altitude Hypoxia Environment. Biol Trace Elem Res 162, 142–152 (2014). https://doi.org/10.1007/s12011-014-0166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0166-6

Keywords

Navigation