Skip to main content
Log in

Effects of Dietary Tin on Growth Performance, Hematology, Serum Biochemistry, Antioxidant Status, and Tin Retention in Broilers

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Tin (Sn) is widely used in daily life and distributed in many tissues and nutrients. Although over-ingestion of Sn can cause health problems, relatively little attention has been given to the toxic effects of Sn in livestock health and productivity. This study was performed to investigate the toxic effects of prolonged high intake of dietary Sn on broilers. 150 one-day-old Avian broilers were randomly divided into five treatment groups, with five replicates of six birds. For 6 weeks, each group was fed a corn-soybean basal diet (BD) or BD + Sn (as SnCl2) at 120, 240, 480, or 720 mg/kg, respectively. Compared with the control, hepatic glutathione peroxidase (GPX) and superoxide dismutase (SOD) activities were significantly decreased when supplemented with Sn up to 480 mg/kg, while malondialdehyde (MDA) was increased until Sn supplementation at 720 mg/kg. Moreover, dietary Sn supplementation at 720 mg/kg decreased BW gain, feed intake, and impaired feed conversion ratio. The 720 mg Sn/kg group also increased activities of alkaline phosphatase (AKP), while decreased hemoglobin (HGB), red blood cell (RBC), and hematocrit (HCT) in the blood. Furthermore, the accumulation of Sn in various tissues was dose dependent on Sn ingestion. It was found that the tibia and feather are the two main tissues for Sn accumulation, followed by the liver, kidney, and other tissues in broilers. In conclusion, the adverse effects on broilers were induced when diets supplemented with Sn up to 480 mg/kg. Sn levels also managed to accumulate in the tibia and feather of broilers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Stewart JH, Macintosh D, Allen J, McCarthy J (2012) Germanium, tin, and copper. In: Bingham E, Cohrassen B (eds) Patty’s toxicol, 6th edn, vol 1. New York, pp 355–380

  2. Blunden S, Wallace T (2003) Tin in canned food: a review and understanding of occurrence and effect. Food Chem Toxicol 41(12):1651–1662

    Article  CAS  PubMed  Google Scholar 

  3. Howe P, Watts P (2005) Tin and inorganic tin compounds. WHO Geneva Con Int Chem Assessment Doc 65:1–70

    Google Scholar 

  4. Hiles RA (1974) Absorption, distribution and excretion of inorganic tin in rats. Toxicol Appl Pharmacol 27(2):366–379

    Article  CAS  PubMed  Google Scholar 

  5. Schwarz K, Milne DB, Vinyard E (1970) Growth effects of tin compounds in rats maintained in a trace element-controlled environment. Biochem Biophys Res Commun 40(1):22–29

    Article  CAS  PubMed  Google Scholar 

  6. Milne DB, Schwarz K, Sognnaes R (1972) Effect of newer essential trace elements in rat incisor pigmentation. Fed Proc 31:700, abstract

    Google Scholar 

  7. Schwarz K (1974) Proceedings: recent dietary trace element research, exemplified by tin, fluorone, and silicon. Fed Proc 33(6):1748–1757

    CAS  PubMed  Google Scholar 

  8. Nielsen FH (1998) Ultratrace elements in nutrition: current knowledge and speculation. J Trace Elem Exp Med 11(2–3):251–274

    Article  CAS  Google Scholar 

  9. Johnson MA, Baier MJ, Greger JL (1982) Effects of dietary tin on zinc, copper, iron, manganese, and magnesium metabolism of adult males. Am J Clin Nutr 35(6):1332–1338

    CAS  PubMed  Google Scholar 

  10. Chiba M, Ogihara K, Inaba Y, Nishima T, Kikuchi M (1984) The organ distribution of tin and the effect of tin on concentrations of several essential elements in rabbit. Toxicology 31(1):23–32

    Article  CAS  PubMed  Google Scholar 

  11. Johnson MA, Greger JL (1985) Tin, copper, iron and calcium metabolism of rats fed various dietary levels of inorganic tin and zinc. J Nutr 115(5):615–624

    CAS  PubMed  Google Scholar 

  12. Beynen AC, Pekelharing HL, Lemmens AG (1992) High intakes of tin lower iron status in rats. Biol Trace Elem Res 35(1):85–88

    Article  CAS  PubMed  Google Scholar 

  13. Reicks M, Rader JI (1990) Effects of dietary tin and copper on rat hepatocellular antioxidant protection. Proc Soc Exp Biol Med 195(1):123–128

    Article  CAS  PubMed  Google Scholar 

  14. De Groot AP, Feron VJ, Til HP (1973) Short-term toxicity studies on some salts and oxides of tin in rats. Food Cosmet Toxicol 11(1):19–30

    Article  PubMed  Google Scholar 

  15. Janssen PJ, Bosland MC, van Hees JP, Spit BJ, Willems MI, Kuper CF (1985) Effects of feeding stannous chloride on different parts of the gastrointestinal tract of the rat. Toxicol Appl Pharmacol 78(1):19–28

    Article  CAS  PubMed  Google Scholar 

  16. Pekelharing HL, Lemmens AG, Beynen AC (1994) Iron, copper and zinc status in rats fed on diets containing various concentrations of tin. Br J Nutr 71(1):103–109

    Article  CAS  PubMed  Google Scholar 

  17. Benoy CJ, Hooper PA, Schneider R (1971) The toxicity of tin in canned fruit juices and solid foods. Food Cosmet Toxicol 9(5):645–656

    Article  CAS  PubMed  Google Scholar 

  18. El-Demerdash FM, Yousef MI, Zoheir MA (2005) Stannous chloride induces alterations in enzyme activities, lipid peroxidation and histopathology in male rabbit: antioxidant role of vitamin C. Food Chem Toxicol 43(12):1743–1752

    Article  CAS  PubMed  Google Scholar 

  19. El-Makawy AI, Girgis SM, Khalil WK (2008) Developmental and genetic toxicity of stannous chloride in mouse dams and fetuses. Mutat Res 657(2):105–110

    Article  CAS  PubMed  Google Scholar 

  20. Meng PJ, Wang JT, Liu LL, Chen MH, Hung TC (2005) Toxicity and bioaccumulation of tributyltin and triphenyltin on oysters and rock shells collected from Taiwan maricuture area. Sci Total Environ 349(1–3):140–149

    Article  CAS  PubMed  Google Scholar 

  21. Zhang J, Zuo Z, He C, Wu D, Chen Y, Wang C (2009) Inhibition of thyroidal status related to depression of testicular development in Sebastiscus marmoratus exposed to tributyltin. Aquat Toxicol 94(1):62–67

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J, Zuo Z, Wang Y, Yu A, Chen Y, Wang C (2011) Tributyltin chloride results in dorsal curvature in embryo development of Sebastiscus marmoratus via apoptosis pathway. Chemosphere 82(3):437–442

    Article  CAS  PubMed  Google Scholar 

  23. Şişman T (2011) Early life stage and genetic toxicity of stannous chloride on zebrafish embryos and adults: toxic effects of tin on zebrafish. Environ Toxicol 26(3):240–249

    Article  PubMed  Google Scholar 

  24. Schäfer SG, Femfert U (1984) Tin—a toxic heavy metal? A review of the literature. Regul Toxicol Pharmacol 4(1):57–69

    Article  PubMed  Google Scholar 

  25. Bryan GW, Langston WJ (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ Pollut 76(2):89–131

    Article  CAS  PubMed  Google Scholar 

  26. Park J, Presley BJ (1997) Trace metals contamination of sediments and organisms from the Swan Lake area of Galveston Bay. Environ Pollut 98(2):209–221

    Article  CAS  Google Scholar 

  27. Eisler R (1989) Tin hazards to fish, wildlife, and invertebrates: a synoptic review. Laurel, MD, US Fish and Wildlife Service, Patuxent Wildlife Research Center (PB-89-139620/XAB)

  28. Lum KK, Kim J, Lei XG (2013) Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J Anim Sci Biotechnol 4(1):53

    Article  PubMed Central  PubMed  Google Scholar 

  29. Jenkins DW (1980) Biological monitoring of toxic trace metals. Volume 2. Toxic trace metals in plants and animals of the world. Part III. U.S. Environmental Protection Agency Report 600/3-80-092:1130-1148

  30. Sun LH, Li JG, Zhao H, Shi J, Huang JQ, Wang KN, Xia XJ, Li L, Lei XG (2013) Porcine serum can be biofortified with selenium to inhibit proliferation of three types of human cancer cells. J Nutr 143(7):1115–1122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Mohri M, Ehsani A, Norouzian MA, Bami MH, Seifi HA (2011) Parenteral selenium and vitamin E supplementation to lambs: hematology, serum biochemistry, performance, and relationship with other trace elements. Biol Trace Elem Res 139(3):308–316

    Article  CAS  PubMed  Google Scholar 

  32. Wu Y, Wu Q, Zhou Y, Ahmad H, Wang T (2013) Effects of clinoptilolite on growth performance and antioxidant status in broilers. Biol Trace Elem Res 155(2):228–235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Jiang X, Gan W, Wan L, Deng Y, Yang Q, He Y (2010) Electrochemical hydride generation atomic fluorescence spectrometry for detection of tin in canned foods using polyaniline-modified lead cathode. J Hazard Mater 184(1–3):331–336

    Article  CAS  PubMed  Google Scholar 

  34. Rüdel H (2003) Case study: bioavailability of tin and tin compounds. Ecotoxicol Environ Saf 56(1):180–189

    Article  PubMed  Google Scholar 

  35. CAC (Codex Alimentarius Commission) (2001) Procedural manual, foods and agriculture organization of the UN/World Health Organization, Rome

  36. EC (European Commission) (2004) Commission Regulation (EC) No 242/2004 amending Regulation (EC) No 466/2001 as regards inorganic tin in foods. Official Journal of the European Union

  37. Food Standards Australia New Zealand (FSANZ) (2002) The 20th Australian total diet survey. FSANZ, Canberra

    Google Scholar 

  38. Ministry of Health of the People’s Republic of China (2012) Maximum levels of contaminants in foods. GB 2762-2012. China Stand. Press, Beijing, China

  39. De Groot AP (1973) Subacute toxicity of inorganic tin as influenced by dietary levels of iron and copper. Food Cosmet Toxicol 11(6):955–962

    Article  PubMed  Google Scholar 

  40. Goss BC (1917) Inhibition of digestion of proteins by adsorbed tin. J Biol Chem 30(1):53–60

    CAS  Google Scholar 

  41. Du J, Cheng SY, Hou WX, Shi BM, Shan AS (2013) Effectiveness of maifanite in reducing the detrimental effects of cadmium on growth performance, cadmium residue, hematological parameters, serum biochemistry, and the activities of antioxidant enzymes in pigs. Biol Trace Elem Res 155(1):49–55

    Article  CAS  PubMed  Google Scholar 

  42. Yousef MI, Awad TI, Elhag FA, Khaled FA (2007) Study of the protective effect of ascorbic acid against the toxicity of stannous chloride on oxidative damage, antioxidant enzymes and biochemical parameters in rabbits. Toxicology 235(3):194–202

    Article  CAS  PubMed  Google Scholar 

  43. De Mattos JC, Dantas FJ, Bezerra RJ, Bernardo-Filho M, Cabral-Neto JB, Lage C, Leitão AC, Caldeira-de-Araújo A (2000) Damage induced by stannous chloride in plasmid DNA. Toxicol Lett 116(1–2):159–163

    Article  PubMed  Google Scholar 

  44. Caldeira-de-Araújo A, Dantas FJS, Moraes MO, Felzenszwalb I, Bernardo-Filho M (1996) Stannous chloride participates in the generation of reactive oxygen species. J Braz Assoc Adv Sci 48(1–2):109–113

    Google Scholar 

  45. Rana SV (2014) Perspectives in endocrine toxicity of heavy metals—a review. Biol Trace Elem Res 160(1):1–14

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the Fundamental Research Funds for the Central Universities (2011QC050 and 2013BQ059) and Hubei Provincial Natural Science Foundation (2013CFA010).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ni-Ya Zhang or DeSheng Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, LH., Zhang, NY., Zhai, QH. et al. Effects of Dietary Tin on Growth Performance, Hematology, Serum Biochemistry, Antioxidant Status, and Tin Retention in Broilers. Biol Trace Elem Res 162, 302–308 (2014). https://doi.org/10.1007/s12011-014-0129-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0129-y

Keywords

Navigation