Skip to main content
Log in

Research Advances on Apoptosis Caused by Quantum Dots

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Recently, quantum dots (QDs) have been widely applied in biological and biomedical fields such as cell labeling, living tissue imaging, and photodynamic therapy because of their superior optical properties. Meanwhile, the potential biological negative effects and/or toxic effects of QDs have become increasingly important, especially the cytotoxicity caused by QDs. One of the common cytotoxicity when living organisms are treated with QD is apoptosis, where many attempts have been made to explain the mechanisms of apoptosis caused by QDs’ use. One of the mechanisms is the production of cadmium ion (Cd2+) and reactive oxygen species (ROS). Excess generation of ROS will result in oxidative stress that would mediate apoptosis. Furthermore, the activation of cell death receptors and mitochondria-dependent such as B cell lymphoma 2 (Bcl-2) family and the caspase family could onset apoptosis. Signal transduction such as some classical signal pathways of PI3K-AKT, NF-E2-related factor 2 (Nrf2)-antioxidant response element (ARE), mitogen-activated protein kinases (MAPKs), and nuclear factor kappa B (NF-κB) also plays an important role in the regulation of apoptosis. Several ways to reduce the apoptotic rate have been introduced, such as surface modification, controlling, the dose, size, and exposure time of QDs as well as using antioxidants or inhibitors. In this review, we attempted to review the most recent findings associated with apoptosis caused by QDs so as to provide some guidelines for a safer QD application in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Xiao Q, Qiu T, Huang S, Liu Y, He Z (2012) preparation and biological effect of nucleotide-capped CdSe/ZnS quantum dots on Tetrahymena thermophila. Biol Trace Elem Res 147:346–353

    Article  PubMed  CAS  Google Scholar 

  2. Kim S, Fisher B, Eisler HJ, Bawendi MG (2003) Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J Am Chem Soc 125(38):11466–11467

    Article  PubMed  CAS  Google Scholar 

  3. Yang B, Liu R, Hao X, Wu Y, Du J (2013) Effect of CdTe quantum dots size on the conformational changes of human serum albumin: results of spectroscopy and isothermal titration calorimetry. Biol Trace Elem Res 155:150–158

    Article  PubMed  CAS  Google Scholar 

  4. Manabe N, Hoshino A, Liang YQ, Goto T, Kato N, Yamamoto K (2006) Quantum dot as a drug tracer in vivo. IEEE Trans Nanobiosci 5(4):263–267

    Article  Google Scholar 

  5. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018

    Article  PubMed  CAS  Google Scholar 

  6. Alireza V, Haleh M, Mohammad S, Farkhani SM, Zarghami N, Kouhi M, Akbarzadeh A, Davaran S (2012) Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett. doi:10.1186/1556-276X-7-480

    Google Scholar 

  7. De Wild M, Berner S, Suzuki H, Ramoino L, Baratoff A, Jung TA (2003) Molecular assembly and self-assembly: molecular nanoscience for future technologies. Ann N Y Acad Sci 1006:291–305

    Article  PubMed  Google Scholar 

  8. Zhang ZY, Oehler AEH, Resan B, Kurmulis S, Zhou KJ, Wang Q, Mangold M, Süedmeyer T, Keller U, Weingarten KJ, Hogg RA (2010) 1.55 μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser. Nano Lett 10:1512–1516

    Article  Google Scholar 

  9. Jiang W, Wang ZM, Dorogan VG, Mazur YI, Li S, Salamo GJ (2011) Insight into optical properties of strain-free quantum dot pairs. J Nanopart Res 13:947–952

    Article  Google Scholar 

  10. Yuechao J, Xiaoyong G, Jingxiao L, Yongsheng C, Jianpeng Z, Xinli L (2012) A novel method for PbS quantum dot synthesis. Mater Lett 72:116–118

    Article  Google Scholar 

  11. Vibin M, Vinayakan R, John A, Raji V, Rejiya CS, Abraham A (2011) Biokinetics and in vivo distribution behaviours of silica-coated cadmium selenide quantum dots. Biol Trace Elem Res 142:213–222

    Article  PubMed  CAS  Google Scholar 

  12. Rzigalinski B, Strobl JS (2009) Cadmium-containing nanoparticles: perspectives on pharmacology and toxicology of quantum dots. Toxicol Appl Pharmacol 238(3):280–288

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Francoise MW, Dusica M (2013) Quantum dot cytotoxicity and ways to reduce it. Accounts Chem Res 46(3):672–680

    Article  Google Scholar 

  14. Driscoll KE, Maurer JK, Poynter J, Higgins J, Asquith T, Miller NS (1992) Stimulation of rat alveolar macrophage fibronectin release in a cadmium chloride model of lung injury and fibrosis. Toxicol Appl Pharmacol 116:30–37

    Article  PubMed  CAS  Google Scholar 

  15. Falck FY Jr, Fine LJ, Smith RG, McClatchey KD, Annesley T, England B, Schork AM (1983) Occupational cadmium exposure and renal status. Am J Ind Med 4(4):541–549

    Article  PubMed  CAS  Google Scholar 

  16. Xu M, Deng G, Liu S, Chen S, Cui D, Yang L, Wang Q (2010) Free cadmium ions released from CdTe-based nanoparticles and their cytotoxicity on Phaeodactylum tricornutum. Metallomics 2:469–473

    Article  PubMed  CAS  Google Scholar 

  17. Kirchner C, Liedl T, Kudera S, Pellegrino T, Munoz Javier A, Gaub HE, Stolzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338

    Article  PubMed  CAS  Google Scholar 

  18. Yu RA, Chen X, Lu W (2001) Study on cadmium-induced hepatocellular apoptosis in rat. Wei Sheng Yan Jiu 30:271–272

    PubMed  CAS  Google Scholar 

  19. Tzirogiannis KN, Panoutsopoulos GI, Demonakou MD, Hereti RI, Alexandropoulou KN, Basayannis AC, Mykoniatis MG (2003) Time-course of cadmium-induced acute hepatotoxicity in the rat liver: the role of apoptosis. Arch Toxicol 77:694–701

    Article  PubMed  CAS  Google Scholar 

  20. Habeebu SS, Liu J, Klaassen CD (1998) Cadmium-induced apoptosis in mouse liver. Toxicol Appl Pharmacol 149:203–209

    Article  PubMed  CAS  Google Scholar 

  21. Hart BA, Lee CH, Shukla GS, Shukla A, Osier M, Eneman JD, Chiu JF (1999) Characterization of cadmium-induced apoptosis in rat lung epithelial cells: evidence for the participation of oxidant stress. Toxicology 133:43–58

    Article  PubMed  CAS  Google Scholar 

  22. Li M, Kondo T, Zhao QL, Li FJ, Tanabe K, Arai Y, Zhou ZC, Kasuya M (2000) Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+-calpain and caspase-mitochondria. J Biol Chem 275:39702–39709

    Article  PubMed  CAS  Google Scholar 

  23. Oh SH, Lee BH, Lim SC (2004) Cadmium induces apoptotic cell death in WI38 cells via caspase-dependent Bid cleavage and calpain mediated mitochondrial Bax cleavage by Bcl-2 independent pathway. Biochem Pharmacol 68:1845–1855

    Article  PubMed  CAS  Google Scholar 

  24. Bakalova R, Ohba H, Zhelev Z, Ishikawa M, Baba Y (2004) Quantum dots as photosensitizers? Nat Biotechnol 22:1360–1361

    Article  PubMed  CAS  Google Scholar 

  25. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    Article  PubMed  CAS  Google Scholar 

  26. Oh SH, Lim SC (2006) A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation. Toxicol Appl Pharmacol 212:212–223

    Article  PubMed  CAS  Google Scholar 

  27. Poliandri AH, Cabilla JP, Velardez MO, Bodo CC, Duvilanski BH (2003) Cadmium induces apoptosis in anterior pituitary cells that can be reversed by treatment with antioxidants. Toxicol Appl Pharmacol 190:17–24

    Article  PubMed  CAS  Google Scholar 

  28. Shih CM, Ko WC, Wu JS, Wei YH, Wang LF, Chang EE, Lo TY, Cheng HH, Chen CT (2004) Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts. J Cell Biochem 91:384–397

    Article  PubMed  CAS  Google Scholar 

  29. Luo YH, Wu SB, Wei YH, Chen YC, Tsai MH, Ho CC, Lin SY, Yang CS, Lin P (2013) Cadmium-based quantum dot induced autophagy formation for cell survival via oxidative stress. Chem Res Toxicol 26(5):662–673

    Article  PubMed  CAS  Google Scholar 

  30. Lovric J, Cho SJ, Winnik FM, Maysinger D (2005) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12:1227–1234

    Article  PubMed  CAS  Google Scholar 

  31. Hsu SH, Lin YY, Huang S, Lem KW, Nguyen DH, Lee DS (2013) Synthesis of water-dispersible zinc oxide quantum dots with antibacterial activity and low cytotoxicity for cell labeling. Nanotechnology. doi:10.1088/0957-4484/24/47/475102

    Google Scholar 

  32. Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15:7–10

    Article  PubMed  CAS  Google Scholar 

  33. Li KG, Chen JT, Bai SS, Wen X, Song SY, Yu Q, Li J, Wang YQ (2009) Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots. Toxicol in Vitro 23:1007–1013

    Article  PubMed  CAS  Google Scholar 

  34. Nguyen KC, Willmore WG, Tayabali AF (2013) Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells. Toxicology 306:114–123

    Article  PubMed  CAS  Google Scholar 

  35. Nazıroğlu M, Yıldız K, Tamtürk B, Erturan İ, Flores-Arce M (2012) Selenium and psoriasis. Biol Trace Elem Res 150(1–3):3–9

    PubMed  Google Scholar 

  36. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  PubMed  CAS  Google Scholar 

  37. Ben-Yoseph O, Ross BD (1994) Oxidation therapy: the use of a reactive oxygen species-generating enzyme system for tumour treatment. Br J Cancer 70:1131–1135

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Wu YN, Yang LX, Shi XY, Li IC, Biazik JM, Ratinac KR, Chen DH, Thordarson P, Shieh DB, Braet F (2011) The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials 32:4565–4573

    Article  PubMed  CAS  Google Scholar 

  39. Singh BR, Singh BN, Khan W, Singh HB, Naqvi AH (2012) ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots. Biomaterials 33:5753–5767

    Article  PubMed  CAS  Google Scholar 

  40. Zhao MX, Ji LN, Mao ZW (2012) β-Cyclodextrin/glycyrrhizic acid functionalised quantum dots selectively enter hepatic cells and induce apoptosis. Chemistry 18:1650–1658

    Article  PubMed  CAS  Google Scholar 

  41. Putcha GV, Harris CA, Moulder KL, Easton RM, Thompson CB, Johnson EM Jr (2002) Intrinsic and extrinsic pathway signaling during neuronal apoptosis: lessons from the analysis of mutant mice. J Cell Biol 157:441–453

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Choi AO, Cho SJ, Desbarats J, Lovric J, Maysinger D (2007) Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnol. doi:10.1186/1477-3155-5-1

    Google Scholar 

  43. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490

    Article  PubMed  CAS  Google Scholar 

  44. Devadas S, Hinshaw JA, Zaritskaya L, Williams MS (2004) Fas stimulated generation of reactive oxygen species or exogenous oxidative stress sensitize cells to Fas-mediated apoptosis. Free Radical Biol Med 35:648–661

    Article  Google Scholar 

  45. Jayanthi S, Ordonez S, McCoy MT, Cadet JL (1999) Dual mechanism of Fas-induced cell death in neuroglioma cells: a role for reactive oxygen species. Brain Res Mol Brain Res 72:158–165

    Article  PubMed  CAS  Google Scholar 

  46. Denning TL, Takaishi H, Crowe SE, Boldogh I, Jevnikar A, Ernst PB (2002) Oxidative stress induces the expression of Fas and Fas ligand and apoptosis in murine intestinal epithelial cell. Free Radical Biol Med 33:1641–1650

    Article  CAS  Google Scholar 

  47. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  PubMed  CAS  Google Scholar 

  48. Crompton M (2000) Bax, Bid and the permeabilization of the mitochondrial outer membrane in apoptosis. Curr Opin Cell Biol 12:414–419

    Article  PubMed  CAS  Google Scholar 

  49. Kong L, Zhang T, Tang M, Pu Y (2012) Apoptosis induced by cadmium selenide quantum dots in JB6 cells. J Nanosci Nanotechnol 12:8258–8265

    Article  PubMed  CAS  Google Scholar 

  50. Lamkanfi M, Kanneganti TD (2010) Caspase-7: a protease involved in apoptosis and inflammation. Int J Biochem Cell Biol 42:21–24

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Lakhani SA, Masud A, Kuida K, Porter GA Jr, Booth GJ, Mehal WZ, Inayat I, Flavell RA (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311:847–851

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Amna T, Van Ba H, Vaseem M, Hassan MS, Khil MS, Hahn YB, Lee HK, Hwang IH (2013) Apoptosis induced by copper oxide quantum dots in cultured C2C12 cells via caspase 3 and caspase 7: a study on cytotoxicity assessment. Appl Microbiol Biotechnol 97:5545–5553

    Article  PubMed  CAS  Google Scholar 

  53. Zhang G, Shi L, Selke M, Wang X (2011) CdTe quantum dots with daunorubicin induce apoptosis of multidrug-resistant human hepatoma HepG2/ADM cells: in vitro and in vivo evaluation. Nanoscale Res Lett. doi:10.1186/1556-276X-6-418

    Google Scholar 

  54. Chan WH, Shiao NH, Lu PZ (2006) CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol Lett 167(3):191–200

    Article  PubMed  CAS  Google Scholar 

  55. Motohashi H, Yamamoto M (2004) Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10:549–556

    Article  PubMed  CAS  Google Scholar 

  56. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Zhao YX, Lin KF (2011) Quantum dots enhance Cu2+-induced hepatic L02 cells toxicity: involvement of Nrf2. Toxicol Enviro Chem 93(4):715–721

    Article  CAS  Google Scholar 

  58. He X, Chen MG, Ma Q (2008) Activation of Nrf2 in defense against cadmium-induced oxidative stress. Chem Res Toxicol 21:375–383

    Article  Google Scholar 

  59. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103(2):239–252

    Article  PubMed  CAS  Google Scholar 

  60. Caraglia M, Marra M, Pelaia G, Maselli R, Caputi M, Marsico SA, Abbruzzese A (2005) Alpha-interferon and its effects on signal transduction pathways. J Cell Physiol 202:323–335

    Article  PubMed  CAS  Google Scholar 

  61. Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med 228:111–133

    CAS  Google Scholar 

  62. Lu HY, Shiao NH, Chan WH (2006) CdSe quantum dots induce apoptosis via activation of JNK and PAK2 in a human osteoblast cell line. J Med Biol Eng 26:89–96

    Google Scholar 

  63. Martin P, Pognonec P (2010) ERK and cell death: cadmium toxicity, sustained ERK activation and cell death. FEBS J 277:39–46

    Article  PubMed  CAS  Google Scholar 

  64. Graham B, Gibson SB (2005) The two faces of NFkappaB in cell survival responses. Cell Cycle 4(10):1342–1345

    Article  PubMed  CAS  Google Scholar 

  65. Romoser AA, Chen PL, Berg JM, Seabury C, Ivanov I, Criscitiello MF, Sayes CM (2011) Quantum dots trigger immunomodulation of the NF-κB pathway in human skin cells. Mol Immunol 48:1349–1359

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Beg AA, Baltimore D (1996) An essential role for NF-kappaB in preventing TNF alpha-induced cell death. Science 274:782–784

    Article  PubMed  CAS  Google Scholar 

  67. Liu ZG, Hsu H, Goeddel DV, Karin M (1996) Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis whil NF-kappaB activation prevents cell death. Cell 87:565–576

    Article  PubMed  CAS  Google Scholar 

  68. Trincavell ML, Falleni A, Chelli B, Tuscano D, Costa B, Gremigni V, Lucacchini A, Martini C (2003) A(2A) adenosine receptor ligands and proinflammatory cytokines induce PC 12 cell death through apoptosis. Biochem Pharmacol 66:1953–1962

    Article  Google Scholar 

  69. Nagy A, Steinbrück A, Gao J, Doggett N, Hollingsworth JA, Iyer R (2012) Comprehensive analysis of the effects of CdSe quantum dot size, surface charge, and functionalization on primary human lung cells. ACS Nano 6:4748–4762

    Article  PubMed  CAS  Google Scholar 

  70. Pu Y, Luo KQ, Chang DC (2002) A Ca2+ signal is found upstream of cytochrome c release during apoptosis in HeLa cells. Biochem Biophys Res Commun 299:762–769

    Article  PubMed  CAS  Google Scholar 

  71. Liu X, Tang M, Zhang T, Hu Y, Zhang S, Kong L, Xue Y (2013) Determination of a threshold dose to reduce or eliminate CdTe-induced toxicity in L929 cells by controlling the exposure dose. PLoS One. doi:10.1371/journal.pone.0059359

    Google Scholar 

  72. Horie M, Kato H, Fujita K, Endoh S, Iwahashi H (2012) In vitro evaluation of cellular response induced by manufactured nanoparticles. Chem Res Toxicol 25(3):605–619

    Article  PubMed  CAS  Google Scholar 

  73. Yang B, Liu R, Hao X, Wu Y, Du J (2012) The interactions of glutathione-capped CdTe quantum dots with trypsin. Biol Trace Elem Res 146(3):396–401

    Article  PubMed  CAS  Google Scholar 

  74. Qu G, Wang X, Wang Z, Liu S, Jiang G (2013) Cytotoxicity of quantum dots and graphene oxide to erythroid cells and macrophages. Nanoscale Res Lett. doi:10.1186/1556-276X-8-198

    Google Scholar 

  75. Prasad BR, Mullins G, Nikolskaya N, Connolly D, Smith TJ, Gérard VA, Byrne SJ, Davies GL, Gun’ko YK, Rochev Y (2012) Effects of long-term exposure of gelatinated and non-gelatinated cadmium telluride quantum dots on differentiated PC12 cells. J Nanobiotechnol. doi:10.1186/1477-3155-10-4

    Google Scholar 

  76. Yuan X, Liu Z, Guo Z, Ji Y, Jin M, Wang X (2014) Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups. Nanoscale Res Lett. doi:10.1186/1556-276X-9-108

    Google Scholar 

  77. Prasad BR, Nikolskaya N, Connolly D, Smith TJ, Byrne SJ, Gerard VA, Gun’ko YK, Rochev Y (2010) Long-term exposure of CdTe quantum dots on PC12 cellular activity and the determination of optimum non-toxic concentrations for biological use. J Nanobiotechnol. doi:10.1186/1477-3155-8-7

    Google Scholar 

  78. Su Y, He Y, Lu H, Sai L, Li Q, Li W, Wang L, Shen P, Huang Q, Fan C (2009) The cytotoxicity of cadmium based, aqueous phase-synthesized, quantum dots and its modulation by surface coating. Biomaterials 30:19–25

    Article  PubMed  CAS  Google Scholar 

  79. Tang M, Xing T, Zeng J, Wang H, Li C, Yin S, Yan D, Deng H, Liu J, Wang M, Chen J, Ruan DY (2008) Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons. Environ Health Perspect 116:915–922

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Wu J, Chen Q, Liu W, Zhang Y, Lin JM (2012) Cytotoxicity of quantum dots assay on a microfluidic 3D-culture device based on modeling diffusion process between blood vessels and tissues. Lab Chip 12:3474–3480

    Article  PubMed  CAS  Google Scholar 

  81. Wu T, Tang M (2014) Toxicity of quantum dots on respiratory system. Inhal Toxicol 26(2):128–139. doi:10.3109/08958378.2013.871762

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The project was supported by the National Natural Science Foundation of China (30972504, 81172697, and 81302461). This work was supported by the National Important Project on Scientific Research of China (No. 2011CB933404).

Conflict of Interest

There is no conflict of interest for all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Q., Tang, M. Research Advances on Apoptosis Caused by Quantum Dots. Biol Trace Elem Res 161, 3–12 (2014). https://doi.org/10.1007/s12011-014-0068-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0068-7

Keywords

Navigation