Skip to main content
Log in

Lithium-Induced Hypothyroidism: Oxidative Stress and Osmotic Fragility Status in Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study was conducted to explore the possible effects of different doses of lithium carbonate on thyroid functions, erythrocyte oxidant–antioxidant status, and osmotic fragility. Twenty-four Wistar-type male rats were equally divided into three groups: groups I and II received 0.1 and0.2 % lithium carbonate in their drinking water, respectively, for 30 days. The rats in group III served as controls, drinking tap water without added lithium. At the end of the experimental period, the erythrocyte osmotic fragility and the levels of triiodothyronine (T3), thyroxine (T4), thyroid-stimulating hormone (TSH), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) were measured in blood samples. Compared to controls, there was a statistically significant increase of TSH but decreases of the T3 and T4 levels in group II. Both experimental groups showed a statistically significant increase of the maximum osmotic fragility limit. The minimum osmotic fragility values of the animals in group II were statistically higher than those of controls. The standard hemolytic increment curve of both experimental groups was shifted to the right when compared to the curve obtained from the controls. Also, relative to controls, the activities of MDA and SOD were significantly higher and the GSH level lower in group II, but not so in group I. The results of the present study show that treatment with lithium carbonate may result in thyroid function abnormalities, increased oxidative damage, and possible compromise of the erythrocyte membrane integrity resulting from increased osmotic fragility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Webb AL, Solomon DA, Ryan CE (2001) Lithium levels and toxicity among hospitalized patients. Psychiatr Serv 52:229–231

    Article  PubMed  CAS  Google Scholar 

  2. Lazarus JH, Addison GM, Richards AR, Owen GM (1974) Treatment of thyrotoxicosis with lithium carbonate. Lancet 2:1160–1162

    Article  PubMed  CAS  Google Scholar 

  3. Bocchetta A, Loviselli A (2006) Lithium treatment and thyroid abnormalities. Clin Pract Epidemiol Ment Health 12:2–23

    Google Scholar 

  4. Focosi D, Azzara A, Kast RE, Carulli G, Petrini M (2009) Lithium and hematology: established and proposed uses. J Leukoc Biol 85:20–28

    Article  PubMed  CAS  Google Scholar 

  5. Lazarus JH (1998) The effects of lithium on thyroid and thyrotropin-releasing hormone. Thyroid 8:909–913

    Article  PubMed  CAS  Google Scholar 

  6. Xu J, Culman J, Blume A, Brecht S, Gohlike P (2003) Chronic treatment with a low dose of lithium protects the brain against ischemic injury by reducing apoptotic death. Stroke 34:1287–1292

    Article  PubMed  CAS  Google Scholar 

  7. Sharma SD, Iqbal M (2005) Lithium induced toxicity in rats: a hematological, biochemical and histopathological study. Biol Pharm Bull 28(5):834–837

    Article  PubMed  CAS  Google Scholar 

  8. Sies H (1985) Oxidative stress. Introductory remarks. In: Sies H (ed) Oxidative stress. Academic, Orlando, pp 1–8

    Google Scholar 

  9. Van Ginkel G, Sevanian A (1994) Lipid peroxidation induced membrane structural alterations. Methods Enzymol 233:273–288

    Article  PubMed  Google Scholar 

  10. Brzezinska S (2001) Erythrocyte osmotic fragility test as the measure of defence against free radicals in rabbits of different age. Acta Vet Hung 49:413–419

    Article  Google Scholar 

  11. Jain SK, Mohandas N, Clark MR, Shobbel SB (1983) The effect of MDA, a product of lipid peroxidation on the deformability, dehydration and Cr 51 survival of erythrocytes. Br J Haematol 53:247–252

    Article  PubMed  CAS  Google Scholar 

  12. Tabaei SF, Yahyavi SH, Zarrindast MR (2002) Effects of lithium carbonate on apomorphine-induced sniffing behaviour in rats. Pharmacol Toxicol 91:135–139

    Article  Google Scholar 

  13. Etling N, Levy M, Fouque F (1987) Thyroid hormones in rats receiving increasing doses of lithium. Ann Endocrinol 4869:452–456

    Google Scholar 

  14. Suess J, Limenton D, Dameshek W, Dolloft JMA (1954) Quantitative method for the determination and charting of erythrocyte hipotonic fragility. Blood 3:1250–1303

    Google Scholar 

  15. Anderson ME (1989) Enzymatic and chemical methods for the determination of glutathione. In: Dolphin D, Poulson R, Avromovic O (eds) Glutathione: chemical, biochemical and medical aspects. Wiley, New York

    Google Scholar 

  16. Martin JP Jr, Dailey M, Sugarman E (1987) Negative and positive assays of superoxide dismutase based on hematoxylin autoxidation. Arch Biochem Biophys 255:329–336

    Article  PubMed  CAS  Google Scholar 

  17. Halliwell G, Gutteridge JMC (1999) Targets of attacks: fatty acids and lipoproteins. Free radicals in biology and medicine. Oxford University Press, New York, pp 289–295

    Google Scholar 

  18. Asayama K, Dobashi K, Hayashibe H, Megata Y, Kato K (1987) Lipid peroxidation and free radical scavengers in thyroid dysfunction in the rat. Endocrinol 121:2112–2118

    Article  CAS  Google Scholar 

  19. Yücel R, Ozdemir S, Dariyerli N, Toplan S, Akyolcu G, Yigit G (2009) Erythrocyte osmotic fragility and lipid peroxidation in experimental hyperthyroidism. Endocrine 36:498–502

    Article  PubMed  Google Scholar 

  20. Venditti P, Balestrieri M, Di Meo S, De Leo T (1997) Effect of thyroid state on lipid peroxidation, antioxidant defences, and susceptibility to oxidative stress in rat tissues. J Endocrinol 155:151–157

    Article  PubMed  CAS  Google Scholar 

  21. Dariyerli N, Toplan S, Akyolcu MC, Hatemi H, Yigit G (2004) Erythrocyte osmotic fragility and oxidative stress in experimental hypothyroidism. Endocrine 25:1–5

    Article  PubMed  CAS  Google Scholar 

  22. Swaroop A, Ramasarma T (1985) Heat exposure and hypothyroid conditions decrease hydrogen peroxide generation in liver mitochondria. Biochem J 226:403–408

    PubMed  CAS  Google Scholar 

  23. Paller MS (1986) Hypothyroidism protects against free radical damage in ischemic acute renal failure. Kidney Int 29:1162–1166

    Article  PubMed  CAS  Google Scholar 

  24. Lazarus JH (1996) The effects of lithium therapy on thyroid and thyrotropin-releasing hormone. Thyroid 8:909–913

    Article  Google Scholar 

  25. Lombardi G, Panza N, Biondi B, Di Lorenzo L, Lupoli G, Muscettola G, Carella C, Bellastella A (1993) Effects of lithium treatment on hypothalamic–pituitary–thyroid axis. A longitudinal study. J Endorinol Invest 16:259–263

    CAS  Google Scholar 

  26. Transbol I, Christiansen C, Baastrup PC (1978) Endocrine effects of lithium: hypothyroidism, its prevalence in long-term treated patients. Acta Endocrinol 87:759–767

    PubMed  CAS  Google Scholar 

  27. Chantal H (2002) Lithium side-effects and predictors of hypothyroidism in patients with bipolar disorder: sex differences. J Psychiatry Neurosci 27:104–107

    Google Scholar 

  28. Wenzel KW, Meinhold H, Raffenberg M, Adlkofer F, Schleusener H (1974) Classification of hypothyroidism in evaluating patients after radioiodine therapy by serum cholesterol, T3-uptake. Total T4, fT4-index, total T3, basal TSH and TRH test. Eur J Clin Invest 4:141–148

    PubMed  CAS  Google Scholar 

  29. Lydiard RB, Gelenberg A (1982) Hazards and adverse effects of lithium. Ann Rev Med 33:327–344

    Article  PubMed  CAS  Google Scholar 

  30. Allagui MS, Hfaiedh N, Croute F, Guermazi F, Vincent C, Soleilhavoup J-P, El Feki A (2005) Effects secondaires de faibles concentrations de lithium sur les fonctions renales, thyroidiennes et sexuelles chez des rats matures males et femelles. C R Biologies 328:900–911

    Article  PubMed  CAS  Google Scholar 

  31. Kiełczykowska M, Pasternak K, Musik I, Wronska-Tyra J, Hordyjewska A (2006) The influence of different doses of lithium administered in drinking water on lipid peroxidation and the activity of antioxidant enzymes in rats. Polish J of Environ Stud 15:747–751

    Google Scholar 

  32. Ahmad M, Elnakady Y, Faroq M, Wadaan M (2011) Lithium induced toxicity in rats: blood serum chemistry, antioxidative enzymes in red blood cells and histopathological studies. Biol Pharm Bull 34:272–277

    Article  PubMed  CAS  Google Scholar 

  33. Tandon A, Nagpaul JP, Dhawan DK (1997) Effect of lithium on hepatic lipid peroxidation and antioxidative enzymes under different dietary protein regimens. J Appl Toxicol 18:187–190

    Article  Google Scholar 

  34. Nciri R, Allagui MS, Croute F, Vincent C, Elfeki A (2008) Effects chroniques de faibles doses de carbonate de lithium chez lasouris.Relations entre statut oxydant et modifications fonctionnelles et structurales des reins et du cerveau. C R Biologies 331:23–31

    Article  PubMed  CAS  Google Scholar 

  35. Abdalla DSP, Bechara EJH (1994) The effect of chlorpromazine and Li2CO3 on the superoxide dismutase and glutathione peroxidase activities of rat brain, liver and erythrocytes. Biochem Mol Biol Int 34:1085–1090

    PubMed  CAS  Google Scholar 

  36. Malhotra A, Dhawan DK (2008) Zinc improves antioxidative enzymes in red blood cells and hematology in lithium-treated rats. Nutr Res 28:43–50

    Article  PubMed  CAS  Google Scholar 

  37. Engin A, Altan N, Isik E (2005) Erythrocyte glutathione levels in lithium-induced hypothyroidism. Drugs RD 6:35–40

    Article  CAS  Google Scholar 

  38. Rober D, Mark L, Mitchell L (2001) Investigation of the hereditary haemolytic anaemia: membrane and enzyme abnormalities. In: Dacie L (ed) Practical hematology, vol 9. Churchill Livingstone, New York, pp 167–173

    Google Scholar 

  39. Devasena T, Lalitha S, Padma K (2001) Lipid peroxidation, osmotic fragility and antioxidant status in children with acute post-streptococcal glomerulonephritis. Clin Chima 308:155–161

    Article  CAS  Google Scholar 

  40. Kolanjiappan K, Manoharan S, Kayalvizhi M (2002) Measurement of erythrocyte lipids, lipid peroxidation, antioxidants and osmotic fragility in cervical cancer patients. Clin Chim Acta 326:143–149

    Article  PubMed  CAS  Google Scholar 

  41. Levander OA, Welsh SO (1981) Crosslinking of membrane proteins in red blood cells from vitamin E deficient lead-poisoned rats. Life Sci 28:147–151

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Research Fund of Istanbul University for the financial support for this study. Project number BYPS-1-17/22012007.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semra Ozdemir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toplan, S., Dariyerli, N., Ozdemir, S. et al. Lithium-Induced Hypothyroidism: Oxidative Stress and Osmotic Fragility Status in Rats. Biol Trace Elem Res 152, 373–378 (2013). https://doi.org/10.1007/s12011-013-9629-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9629-4

Keywords

Navigation