Skip to main content
Log in

Trace Metals in Fleece Wool and Correlations with Yellowness

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The presence of copper and iron in metal-doped wool has been shown previously to be associated with the production of free radicals and yellowing in photo-irradiated wool. In this study, the yellowness and trace metal content of 700 wool samples was measured to determine if photoyellowing, catalysed by metals, is a major determinant of the colour of fleece wool. Iron and copper content did not positively correlate with yellowness and yellower wool tended to have lower levels of these metals. Instead, a strong positive correlation of yellowness with the calcium, manganese and magnesium content was observed in yellow wools. High levels of calcium and magnesium is consistent with biofilm formation by Pseudomonas bacteria that have previously been associated with non-scourable staining of wool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fleet MR, Millington KR (2008) Regional dependence of wool colour on copper status. Int J of Sheep and Wool Sci 56(1):18–32

    Google Scholar 

  2. Lee HJ (1956) The influence of copper deficiency on the fleeces of British breeds of sheep. J Agric Sci 47(02):218–224. doi:10.1017/S0021859600040144

    Article  CAS  Google Scholar 

  3. Fouda TA, Youssef MA, El-Deeb WM (2011) Correlation between zinc deficiency and immune status of sheep. Vet Res 4(2):50–55

    Google Scholar 

  4. Chandra RK (1997) Nutrition and the immune system: an introduction. Am J Clin Nutr 66(2):460S–463S

    PubMed  CAS  Google Scholar 

  5. Gogolewski RP, Nicholls PJ, Mortimer SI, Mackintosh JA, Nesa M, Ly W, Chin JC (1996) Serological responses against Pseudomonas aeruginosa in Merino sheep bred for resistance or susceptibility to fleece rot and body strike. Aust J Agric Res 47:917–926

    Article  Google Scholar 

  6. Merritt GC, Watts JE (1978) The changes in protein concentration and bacteria of fleece and skin during the development of fleece-rot and body strike in sheep. Aust Vet J 54(11):517–520

    Article  PubMed  CAS  Google Scholar 

  7. James PJ, Ponzoni RW, Walkley JRW, Smith DH, Stafford JE (1983) Preliminary estimates of phenotypic and genetic parameters for fleece rot susceptiblity in the South Australian Merino. Wool Tech Sheep Bree 31(4):152–157

    Google Scholar 

  8. Chan WY, Rennert OM (1985) Genetic trace metal disturbances. J Am Coll Nutr 4(1):39–48

    PubMed  CAS  Google Scholar 

  9. Hatcher S, Hynd PI, Thornberry KJ, Gabb S (2010) Can we breed Merino sheep with softer, whiter, more photostable wool? Anim Prod Sci 50:1089–1097

    Article  Google Scholar 

  10. Burns RH, Johnston A, Hamilton JW, McColloch RJ, Duncan WE, Fisk HG (1964) Minerals in domestic wool. J Anim Sci 23:5–11

    Google Scholar 

  11. Leonard MM, McLaughlin JR (1990) The importance of mineral dirt on the colour of commercially scoured wool. Proceedings of the International Wool Textile Research Conference, Christchurch III: p. 81–90

  12. Baker L (1995) The effect of dust contamination on the colour of wool. Bachelor of Science, The University of New South Wales

  13. Smith GJ (1974) Effect of bound metal ions on photosensitivity of wool. N Z J Sci 17:349–350

    CAS  Google Scholar 

  14. Millington KR, Kirschenbaum LJ (2002) Detection of hydroxyl radicals in photoirradiated wool, cotton, nylon and polyester fabrics using a fluorescent probe. Color Technol 118:6–14

    Article  CAS  Google Scholar 

  15. Millington KR (2006) Photoyellowing of wool. Part 2: photoyellowing mechanisms and methods of prevention. Color Technol 122:301–316

    Article  CAS  Google Scholar 

  16. Smith GJ, Claridge RFC, Smith CJ (1979) The action spectra of free radicals produced by the irradiation of keratin containing bound iron(III) ions. Photochem Photobiol 29:777–779

    Article  PubMed  CAS  Google Scholar 

  17. Smith GJ (1975) Effect of metal ions on the photoyellowing of wool. Text Res J 45:483–485

    Article  CAS  Google Scholar 

  18. Stadtman ER (1990) Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med 9:315–325

    Article  PubMed  CAS  Google Scholar 

  19. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272(33):20313–20316

    Article  PubMed  CAS  Google Scholar 

  20. Werf JHJ, Kinghorn BP, Banks RG (2010) Design and role of an information nucleus in sheep breeding programs. Anim Prod Sci 50:998–1003

    Article  Google Scholar 

  21. Sumner RMW, Craven AJ (2005) Relation between skin structure and wool yellowing in Merino and Romney sheep Proc N Z. Soc Anim Prod 65:197–202

    Google Scholar 

  22. Holt LA, Lax J, Moll L (1994) The effect of weathering and weathering control measures on the colour of scoured wool. Wool Tech Sheep Bree 42(2):151–159

    Google Scholar 

  23. Hardy JI, Wolf HW (1947) Wool fiber density of Shropshire lambs. J Anim Sci 6:72–82

    Google Scholar 

  24. Reid TC, Urquart RA (2004) Zinc dipping can help reduce wool yellowing. Proc N Z Soc Anim Prod 64:277–281

    Google Scholar 

  25. Cheton PLB, Archibald FS (1988) Manganese complexes and the generation and scavenging of hydroxyl free radicals. Free Radic Biol Med 5(5–6):325–333

    Article  PubMed  CAS  Google Scholar 

  26. Hynd PI (2000) The nutritional biology of wool and hair follicles. Anim Sci 70:181–195

    CAS  Google Scholar 

  27. Lee J, Masters DG, White CL, Grace ND, Judson GJ (1999) Current issues in trace element nutrition of grazing livestock in Australia and New Zealand. Aust J Agric Res 50:1341–1364

    Article  CAS  Google Scholar 

  28. Wood E (2002) The basics of wool colour measurement. Wool Tech Sheep Bree 50(2):121–132

    Google Scholar 

  29. King AL, Millington KR (2010) Measurement of light penetration through a simulated Merino fleece. Anim Prod Sci 50(6):585–588

    Article  Google Scholar 

  30. Lennox FG (1938) Fleece investigations. Council for Scientific and Industrial Research, Melbourne, pp 22–24, No 83, Paper No2

    Google Scholar 

  31. Kapoor UR, Agarwala ON, Pachauri VC, Nath K, Narayan S (1972) The relationship between diet, the copper and sulphur content of wool, and fibre characteristics. J Agric Sci 79:109–114

    Article  Google Scholar 

  32. Ghosal AK, Jatkar PR, Dwarkanath PK (1977) A note on copper supplementation on canary colouration of wool. Indian J Anim Sci 46(12):670–673

    Google Scholar 

  33. Kempson IM, Skinner WM (2005) ToF-SIMS analysis of elemental distributions in human hair. Sci Total Environ 338:213–227

    Article  PubMed  CAS  Google Scholar 

  34. Hatcher S, King AL, Millington KR (2012) Genetic variation in sulfur, calcium, magnesium, manganese and trace metal content of Merino wool and correlations with brightness, yellowness and photostability. Anim Prod Sci 52(7):463–470. doi:10.1071/AN11235

    CAS  Google Scholar 

  35. Gorham E (1961) Factors influencing supply of major ions to inland waters, with special reference to the atmosphere. Geol Soc Am Bull 72:795–840

    Article  CAS  Google Scholar 

  36. Hazelton P, Murphy B (2007) Interpreting soil test results. What do all the numbers mean? CSIRO, Melbourne

  37. Haenlein GFW (2006) The nutritional value of sheep milk. University of Delaware, Newark, Delaware, 19717–1303 USA. http://www.smallstock.info/issues/sheepmilk.htm#2. Accessed 20 July 2011

  38. Miller SM, Lamb CS, Reichel MP, McCabe P, Baber D (1998) Calcium and phosphorus status of weaner sheep grazing native pasture in the Falkland Islands. Anim Prod Aust 22:394

    Google Scholar 

  39. Shiga A, Hamamoto S, Shinozaki K (1980) Experimental studies on hypomagnesemia of ruminants VII. Effects of dietary magnesium and calcium composition on magnesium and calcium content of wool in lactating and non-lactating ewes. Jpn J Vet Sci 42(4):443–451

    Article  CAS  Google Scholar 

  40. McLaughlin JR, Leonard MM (1990) The deposition of particulate material on wool. Proceedings of the 8th International Wool Textile Research Conference Christchurch III: pp. 71–80

  41. Hay JB, Mills SC (1982) The migration of sebum and suint components along wool fibres of Merino sheep. Aust J Agric Res 33:817–825

    Article  CAS  Google Scholar 

  42. Tainer JA, Roberts VA, Getzoff ED (1992) Protein metal-binding sites. Curr Opin Biotechnol 3(4):378–387

    Article  PubMed  CAS  Google Scholar 

  43. Aitken FJ, Cottle DJ, Reid TC, Wilkinson BR (1994) Mineral and amino acid composition of wool from New Zealand Merino sheep differing in susceptibility to yellowing. Aust J Agric Res 45:391–401

    Article  CAS  Google Scholar 

  44. James PJ, Ponzoni RW, Walkley JRW, Whitely KJ (1990) Genetic parameters for wool production and quality traits in South Australian Merinos of the Collinsville family group. Aust J Agric Res 41:583–594

    Article  Google Scholar 

  45. James PJ et al (1987) Fleece rot in South Australian Merinos: heritability and correlations with fleece characters. Merino Improvement Programmes in Australia. The Australian Wool Corporation, Melbourne, pp 341–345

    Google Scholar 

  46. David HG, Lead JA (1982) The relation between the scoured colour of raw wool and its suint content. J Text I 73(2):84–89

    Article  Google Scholar 

  47. Hynd P (2010) Co-operative Research Centre for Sheep Industry Innovation Report: suint and elemental analysis of phenotypic selections from the whole INF flocks and extreme phenotypes from selected sires from Turretfield. The University of Adelaide, Roseworthy

    Google Scholar 

  48. Dyer JM, Bringans SD, Aitken GD, Joyce NI, Bryson WG (2007) Extraction and characterisation of non-scourable chromophores from discoloured fleece wool. Color Technol 123:54–58

    Article  CAS  Google Scholar 

  49. Ramos I, Dietrich LEP, Price-Whelan A, Newman DK (2010) Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales. Res Microbiol 161(3):187–191

    Article  PubMed  CAS  Google Scholar 

  50. Geesey GG, Wigglesworth-Cooksey B, Cooksey KE (2000) Influence of calcium and other cations on surface adhesion of bacteria and diatoms: a review. Biofouling 15(1):195–205

    Article  PubMed  CAS  Google Scholar 

  51. Turakhia MH, Characklis WG (1989) Activity of Pseudomonas aeruginosa in biofilms: effect of calcium. Biotechnol Bioeng 33(4):406–414

    Article  PubMed  CAS  Google Scholar 

  52. de Kerchove AJ, Elimelech M (2008) Calcium and magnesium cations enhance the adhesion of motile and nonmotile Pseudomonas aeruginosa on alginate films. Langmuir 24(7):3392–3399

    Article  PubMed  Google Scholar 

  53. Wilkinson BR (1981) Studies on fleece yellowing. Part 1: prediction of susceptibility to yellow discolouration in greasy fleeces. Wool Tech Sheep Bree 29(4):169–174

    Google Scholar 

  54. Banin E, Vasil ML, Greenberg EP (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci 102(31):11076–11081

    Article  PubMed  CAS  Google Scholar 

  55. Pérez Silva RM, Ábalos Rodríguez A, Gómez Montes De Oca JM, Cantero Moreno D (2009) Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresour Technol 100(4):1533–1538

    Article  PubMed  Google Scholar 

  56. Visca P, Colotti G, Serino L, Verzili D, Orsi N, Chiancone E (1992) Metal regulation of siderophore synthesis in Pseudomonas aeruginosa and functional effects of siderophore-metal complexes. Appl Environ Microbiol 58(9):2886–2893

    PubMed  CAS  Google Scholar 

  57. Hayman RH (1953) Studies in fleece-rot of sheep. Aust J Agric Res 4(4):430–463

    Article  Google Scholar 

  58. Roberts DS (1963) Barriers to Dermatophilus dermatonomus infection on the skin of sheep. Aust J Agric Res 14(4):492–508

    Article  Google Scholar 

  59. Banin E, Brady KM, Greenberg EP (2006) Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol 72(3):2064–2069

    Article  PubMed  CAS  Google Scholar 

  60. Fleet MR, Millington KR, King AL (2010) Sunlight exposure caused yellowing and increased mineral content of wool. Anim Prod Sci 50:300–308

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the work of the staff who manage the eight Sheep CRC IN sites and collect wool samples. We also thank The Australian Wool Testing Authority for colour measurements and Cheryl McHugh and her team at CSIRO Process Science and Engineering in Clayton, Melbourne for carrying out ICP-AES analysis on digested wool specimens. We are grateful to the CRC for Sheep Industry Innovation for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. King.

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, A.L., Millington, K.R. Trace Metals in Fleece Wool and Correlations with Yellowness. Biol Trace Elem Res 151, 365–372 (2013). https://doi.org/10.1007/s12011-012-9579-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9579-2

Keywords

Navigation