Skip to main content

Advertisement

Log in

Metal Concentrations in Cerebrospinal Fluid and Blood Plasma from Patients with Amyotrophic Lateral Sclerosis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal degenerative disorder of motor neurons. The cause of this degeneration is unknown, and different causal hypotheses include genetic, viral, traumatic and environmental mechanisms. In this study, we have analyzed metal concentrations in cerebrospinal fluid (CSF) and blood plasma in a well-defined cohort (n = 17) of ALS patients diagnosed with quantitative electromyography. Metal analyses were performed with high-resolution inductively coupled plasma mass spectrometry. Statistically significant higher concentrations of manganese, aluminium, cadmium, cobalt, copper, zinc, lead, vanadium and uranium were found in ALS CSF compared to control CSF. We also report higher concentrations of these metals in ALS CSF than in ALS blood plasma, which indicate mechanisms of accumulation, e.g. inward directed transport. A pattern of multiple toxic metals is seen in ALS CSF. The results support the hypothesis that metals with neurotoxic effects are involved in the pathogenesis of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Charcot J-M (1874) Amyotrophies spinales deuteropatiques sclérose latérale amyotrophique & Sclérose latérale amyotrophique. Bueaux du Progrès Médical 2:234–266

    Google Scholar 

  2. Daube JR (2000) Electrodiagnostic studies in amyotrophic lateral sclerosis and other motor neuron disorders. Muscle Nerve 23(10):1488–1502

    Article  PubMed  CAS  Google Scholar 

  3. Roos PM, Vesterberg O, Nordberg M (2006) Metals in motor neuron diseases. Exp Biol Med (Maywood) 231(9):1481–1487

    CAS  Google Scholar 

  4. Conradi S, Ronnevi LO, Nise G, Vesterberg O (1980) Abnormal distribution of lead in amyotrophic lateral sclerosis—reestimation of lead in the cerebrospinal fluid. J Neurol Sci 48(3):413–418

    Article  PubMed  CAS  Google Scholar 

  5. Kamel F, Umbach DM, Hu H, Munsat TL, Shefner JM, Taylor JA, Sandler DP (2005) Lead exposure as a risk factor for amyotrophic lateral sclerosis. Neurodegener Dis 2(3–4):195–201

    Article  PubMed  CAS  Google Scholar 

  6. Yase Y (1972) The pathogenesis of amyotrophic lateral sclerosis. Lancet 2(7772):292–296

    Article  PubMed  CAS  Google Scholar 

  7. Gellein K, Garruto RM, Syversen T, Sjobakk TE, Flaten TP (2003) Concentrations of Cd, Co, Cu, Fe, Mn, Rb, V, and Zn in formalin-fixed brain tissue in amyotrophic lateral sclerosis and Parkinsonism-dementia complex of Guam determined by high-resolution ICP-MS. Biol Trace Elem Res 96(1–3):39–60

    Article  PubMed  CAS  Google Scholar 

  8. Garruto RM, Yanagihara R (2009) Contributions of isolated Pacific populations to understanding neurodegenerative diseases. Folia Neuropathol 47(2):149–170

    PubMed  CAS  Google Scholar 

  9. Lilienfeld DE, Perl DP (1993) Projected neurodegenerative disease mortality in the United States, 1990–2040. Neuroepidemiology 12(4):219–228

    Article  PubMed  CAS  Google Scholar 

  10. Fang F, Valdimarsdottir U, Bellocco R, Ronnevi LO, Sparen P, Fall K, Ye W (2009) Amyotrophic lateral sclerosis in Sweden, 1991–2005. Arch Neurol 66(4):515–519

    Article  PubMed  Google Scholar 

  11. Maurer MH (2008) Proteomics of brain extracellular fluid (ECF) and cerebrospinal fluid (CSF). Mass Spectrom Rev 29(1):17–28

    Google Scholar 

  12. Miller RG, Munsat TL, Swash M, Brooks BR (1999) Consensus guidelines for the design and implementation of clinical trials in ALS. World Federation of Neurology Committee on Research. J Neurol Sci 169(1–2):2–12

    Article  PubMed  CAS  Google Scholar 

  13. Higashihara M, Sonoo M (2007) Electrodiagnosis of ALS. Brain Nerve 59(10):1031–1041

    PubMed  Google Scholar 

  14. Gellein K, Roos PM, Evje L, Vesterberg O, Flaten TP, Nordberg M, Syversen T (2007) Separation of proteins including metallothionein in cerebrospinal fluid by size exclusion HPLC and determination of trace elements by HR-ICP-MS. Brain Res 1174:136–142

    Article  PubMed  CAS  Google Scholar 

  15. Roos PM, Lierhagen S, Flaten TP, Syversen T, Vesterberg O, Nordberg M (2012) Manganese in cerebrospinal fluid and blood plasma from patients with amyotrophic lateral sclerosis. Exp Biol Med (Maywood) 237(7):803–810

    Article  CAS  Google Scholar 

  16. Rodushkin I, Engstrom E, Stenberg A, Baxter DC (2004) Determination of low-abundance elements at ultra-trace levels in urine and serum by inductively coupled plasma-sector field mass spectrometry. Anal Bioanal Chem 380(2):247–257

    Article  PubMed  CAS  Google Scholar 

  17. Agresti A, Min Y (2001) On small-sample confidence intervals for parameters in discrete distributions. Biometrics 57(3):963–971

    Article  PubMed  CAS  Google Scholar 

  18. Cytel C (2004) Statistical Software for Exact Nonparametric Inference. Users manual. Stat Xact version 7. Cytel studio, Cambridge

  19. Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V (2007) Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B Crit Rev 10(Suppl 1):1–269

    PubMed  CAS  Google Scholar 

  20. Milatovic D, Zaja-Milatovic S, Gupta RC, Yu Y, Aschner M (2009) Oxidative damage and neurodegeneration in manganese-induced neurotoxicity. Toxicol Appl Pharmacol 240(2):219–225

    Article  PubMed  CAS  Google Scholar 

  21. Monnet-Tschudi F, Zurich MG, Boschat C, Corbaz A, Honegger P (2006) Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases. Rev Environ Health 21(2):105–117

    Article  PubMed  CAS  Google Scholar 

  22. Sanders T, Liu Y, Buchner V, Tchounwou PB (2009) Neurotoxic effects and biomarkers of lead exposure: a review. Rev Environ Health 24(1):15–45

    Article  PubMed  CAS  Google Scholar 

  23. Vahidnia A, van der Voet GB, de Wolff FA (2007) Arsenic neurotoxicity—a review. Hum Exp Toxicol 26(10):823–832

    Article  PubMed  CAS  Google Scholar 

  24. Michalke B, Halbach S, Nischwitz V (2009) JEM spotlight: metal speciation related to neurotoxicity in humans. J Environ Monit 11(5):939–954

    Article  PubMed  CAS  Google Scholar 

  25. Aschner M, Jiang GC (2009) Toxicity studies on depleted uranium in primary rat cortical neurons and in Caenorhabditis elegans: what have we learned? J Toxicol Environ Health B Crit Rev 12(7):525–539

    Article  PubMed  CAS  Google Scholar 

  26. Jiang GC, Hughes S, Sturzenbaum SR, Evje L, Syversen T, Aschner M (2009) Caenorhabditis elegans metallothioneins protect against toxicity induced by depleted uranium. Toxicol Sci 111(2):345–354

    Article  PubMed  CAS  Google Scholar 

  27. Jiang GC, Tidwell K, McLaughlin BA, Cai J, Gupta RC, Milatovic D, Nass R, Aschner M (2007) Neurotoxic potential of depleted uranium effects in primary cortical neuron cultures and in Caenorhabditis elegans. Toxicol Sci 99(2):553–565

    Article  PubMed  CAS  Google Scholar 

  28. Bak TH (2010) Motor neuron disease and frontotemporal dementia: one, two, or three diseases? Ann Indian Acad Neurol 13(Suppl 2):S81–S88

    Article  PubMed  Google Scholar 

  29. Zheng W, Aschner M, Ghersi-Egea JF (2003) Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol Appl Pharmacol 192(1):1–11

    Article  PubMed  CAS  Google Scholar 

  30. Schmitt C, Strazielle N, Richaud P, Bouron A, Ghersi-Egea JF (2011) Active transport at the blood-CSF barrier contributes to manganese influx into the brain. J Neurochem 117(4):747–756

    PubMed  CAS  Google Scholar 

  31. Roos PM, Dencker L (2012) Mercury in the spinal cord after inhalation of mercury. Basic Clin Pharmacol Toxicol. doi:0.1111/j.1742-7843.2012.00872.x

  32. Flaten TP, Alfrey AC, Birchall JD, Savory J, Yokel RA (1996) Status and future concerns of clinical and environmental aluminum toxicology. J Toxicol Environ Health 48(6):527–541

    Article  PubMed  CAS  Google Scholar 

  33. Crapper DR, Krishnan SS, Dalton AJ (1973) Brain aluminum distribution in Alzheimer's disease and experimental neurofibrillary degeneration. Science 180(85):511–513

    Article  PubMed  CAS  Google Scholar 

  34. Shaw CA, Petrik MS (2009) Aluminum hydroxide injections lead to motor deficits and motor neuron degeneration. J Inorg Biochem 103(11):1555–1562

    Article  PubMed  CAS  Google Scholar 

  35. Tanridag T, Coskun T, Hurdag C, Arbak S, Aktan S, Yegen B (1999) Motor neuron degeneration due to aluminium deposition in the spinal cord: a light microscopical study. Acta Histochem 101(2):193–201

    Article  PubMed  CAS  Google Scholar 

  36. WHO (2001) Vanadium pentioxide and other inorganic vanadium compounds. Document 29. In: Concise international chemical assessment documents. WHO, Geneva

  37. Afeseh Ngwa H, Kanthasamy A, Anantharam V, Song C, Witte T, Houk R, Kanthasamy AG (2009) Vanadium induces dopaminergic neurotoxicity via protein kinase Cdelta dependent oxidative signaling mechanisms: relevance to etiopathogenesis of Parkinson's disease. Toxicol Appl Pharmacol 240(2):273–285

    Article  PubMed  CAS  Google Scholar 

  38. Dobson AW, Erikson KM, Aschner M (2004) Manganese neurotoxicity. Ann N Y Acad Sci 1012:115–128

    Article  PubMed  CAS  Google Scholar 

  39. Aschner M, Erikson KM, Herrero Hernandez E, Tjalkens R (2009) Manganese and its role in Parkinson's disease: from transport to neuropathology. Neuromolecular Med 11(4):252–266

    Article  PubMed  CAS  Google Scholar 

  40. Kalia K, Jiang W, Zheng W (2008) Manganese accumulates primarily in nuclei of cultured brain cells. Neurotoxicology 29(3):466–470

    Article  PubMed  CAS  Google Scholar 

  41. Miyata S, Nakamura S, Nagata H, Kameyama M (1983) Increased manganese level in spinal cords of amyotrophic lateral sclerosis determined by radiochemical neutron activation analysis. J Neurol Sci 61(2):283–293

    Article  PubMed  CAS  Google Scholar 

  42. Xu R, Wu C, Zhang X, Zhang Q, Yang Y, Yi J, Yang R, Tao Y (2011) Linking hypoxic and oxidative insults to cell death mechanisms in models of ALS. Brain Res 1372:133–144

    Article  PubMed  CAS  Google Scholar 

  43. Brewer GJ (2010) Risks of copper and iron toxicity during aging in humans. Chem Res Toxicol 23(2):319–326

    Article  PubMed  CAS  Google Scholar 

  44. Ibrahimagic OC, Sinanovic O, Zonic L, Hudic J (2006) Amyotrophic lateral sclerosis in younger age associated with abnormality of copper level. Med Arh 60(2):108–109

    PubMed  Google Scholar 

  45. Smith AP, Lee NM (2007) Role of zinc in ALS. Amyotroph Lateral Scler 8(3):131–143

    Article  PubMed  CAS  Google Scholar 

  46. Nordberg G, Jin T, Bernard A, Fierens S, Buchet JP, Ye T, Kong Q, Wang H (2002) Low bone density and renal dysfunction following environmental cadmium exposure in China. Ambio 31(6):478–481

    PubMed  Google Scholar 

  47. Nordberg M, Jin T, Nordberg GF (1992) Cadmium, metallothionein and renal tubular toxicity. IARC Sci Publ 118:293–297

    PubMed  CAS  Google Scholar 

  48. Basun H, Lind B, Nordberg M, Nordstrom M, Bjorksten KS, Winblad B (1994) Cadmium in blood in Alzheimer's disease and non-demented subjects: results from a population-based study. Biometals 7(2):130–134

    Article  PubMed  CAS  Google Scholar 

  49. Bar-Sela S, Reingold S, Richter ED (2001) Amyotrophic lateral sclerosis in a battery-factory worker exposed to cadmium. Int J Occup Environ Health 7(2):109–112

    PubMed  CAS  Google Scholar 

  50. Mazliah J, Barron S, Bental E, Rogowski Z, Coleman R, Silbermann M (1989) The effects of long-term lead intoxication on the nervous system of the chicken. Neurosci Lett 101(3):253–257

    Article  PubMed  CAS  Google Scholar 

  51. Tanquerel des Planches L (1839) Traité des maladies de plomb ou saturnines. Ferra, Paris

    Google Scholar 

  52. Fang F, Kwee LC, Allen KD, Umbach DM, Ye W, Watson M, Keller J, Oddone EZ, Sandler DP, Schmidt S, Kamel F (2010) Association between blood lead and the risk of amyotrophic lateral sclerosis. Am J Epidemiol 171(10):1126–1133

    Article  PubMed  Google Scholar 

  53. Kamel F, Umbach DM, Stallone L, Richards M, Hu H, Sandler DP (2008) Association of lead exposure with survival in amyotrophic lateral sclerosis. Environ Health Perspect 116(7):943–947

    Article  PubMed  CAS  Google Scholar 

  54. Barbeito AG, Martinez-Palma L, Vargas MR, Pehar M, Manay N, Beckman JS, Barbeito L, Cassina P (2011) Lead exposure stimulates VEGF expression in the spinal cord and extends survival in a mouse model of ALS. Neurobiol Dis 37(3):574–580

    Article  Google Scholar 

  55. Oh SS, Kim EA, Lee SW, Kim MK, Kang SK (2007) A case of amyotrophic lateral sclerosis in electronic parts manufacturing worker exposed to lead. Neurotoxicology 28(2):324–327

    Article  PubMed  CAS  Google Scholar 

  56. Nordberg G, Fowler B, Nordberg M, Friberg LT (eds) (2007) Handbook on the toxicology of metals, 3rd edn. Elsevier, New York

    Google Scholar 

  57. Morris KJ, Townsend KM, Batchelor AL (1989) Studies of alveolar cell morphometry and mass clearance in the rat lung following inhalation of an enriched uranium dioxide aerosol. Radiat Environ Biophys 28(2):141–154

    Article  PubMed  CAS  Google Scholar 

  58. Houpert P, Frelon S, Monleau M, Bussy C, Chazel V, Paquet F (2007) Heterogeneous accumulation of uranium in the brain of rats. Radiat Prot Dosimetry 127(1–4):86–89

    Article  PubMed  CAS  Google Scholar 

  59. WHO (2004) WHO health criteria for uranium on-line (2003). WHO guidelines for drinking water quality, 3rd edn. WHO, Geneva

  60. Ishaque AB, Johnson L, Gerald T, Boucaud D, Okoh J, Tchounwou PB (2006) Assessment of individual and combined toxicities of four non-essential metals (As, Cd, Hg and Pb) in the microtox assay. Int J Environ Res Public Health 3(1):118–120

    Article  PubMed  CAS  Google Scholar 

  61. Rai A, Maurya SK, Khare P, Srivastava A, Bandyopadhyay S (2011) Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol Sci 118(2):586–601

    Article  Google Scholar 

Download references

Acknowledgments

Per M. Roos initiated the study and performed the clinical and electromyographical examinations, collected the samples and prepared the first draft of the manuscript. Tore Syversen supervised the laboratory work. We are grateful to Lars Evje, Syverin Lierhagen and Kristin Gellein for performing the metal analyses. Statistician Jakob Bergstrom is acknowledged for his contributions in preparation and completion of the manuscript and for the statistical analyses which were made during his employment at The Medical Statistics Unit, Department of Learning, Informatics, Management & Ethics (LIME), Karolinska Institutet, Stockholm, Sweden. Funding from Martin Rinds foundation and Karolinska Institutet research funds are gratefully acknowledged. Skilful secretarial assistance by Ms. Mona Nyang is noted.

Conflicts of interest

No conflicts of interest have been reported by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per M. Roos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material

Concentrations (micrograms per litre) of metals in CSF and blood plasma and ratios between them. Ratios were calculated by dividing CSF concentrations by blood plasma concentrations (C/B ratios). Mass-spectrometric counts are compared to reference material, and in the lowest range, negative numbers can occur. In case of negative numbers, concentrations have been set to zero. When a division with zero was needed, the actual values were reported. Grey cells represent ALS cases, and white cells represent controls. (PDF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roos, P.M., Vesterberg, O., Syversen, T. et al. Metal Concentrations in Cerebrospinal Fluid and Blood Plasma from Patients with Amyotrophic Lateral Sclerosis. Biol Trace Elem Res 151, 159–170 (2013). https://doi.org/10.1007/s12011-012-9547-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-012-9547-x

Keywords

Navigation