Skip to main content
Log in

Effect of Additional Boron on Tibias of African Ostrich Chicks

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of the present study was to find out the effects of boron on ostrich chicks fed with 0 mg/l, 100 mg/l, 200 mg/l, and 400 mg/l of additional boron in water. We measured bone mineral density (BMD), perimeter, length, weight, ash content of ostrich tibias, thickness of cortical bone, and diameter of the marrow cavity. We also analyzed the apoptosis status of paraffin sections using a TUNEL kit and examined serum levels of leptin and estradiol (E2). The results were dramatic. Compared with the control group, group C had a very high BMD. The serum levels of leptin in groups C and D were significantly higher than control values, and the levels of E2 fluctuated. The perimeter, length, weight, and ash content of ostrich tibias all increased significantly with increasing dosage of boron. The cross-section analysis revealed that the bone marrow cavity shifted closer to one side in group D, which was observed on a macro-scale. This shift may be related to the toxicity of excessive boron, as indicated by the apoptosis status. According to the present data, additional boron was helpful for ostrich chick bone development, and 200 mg/l supplement boron in the drinking water appeared to be the most beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Linnaeus C (1758) Systema naturae (Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. TomusI. Editio decima, reformata) Vol “S. pedibus didactylis”. Holmiae, Stockholm, p 155

    Google Scholar 

  2. Aire TA, Soley JT, Groenewald HB (2003) A morphological study of simple testicular cysts in the ostrich (Struthio camelus). Res Vet Sci 74:153–162

    Article  PubMed  CAS  Google Scholar 

  3. Al-Nasser A, Al-Khalaifa H, Holleman K et al (2003) Ostrich production in the arid environment of Kuwait. J Arid Environ 54:219–224

    Article  Google Scholar 

  4. Shi FP (2006) Young ostrich toe leg disease comprehensive prevention and control. J Anim Sci Vet Med 25:60

    Google Scholar 

  5. Wilson J, Ruszler P (1998) Long term effects of boron on layer bone strength and product ion parameters. Br Poult Sci 3:11–15

    Article  Google Scholar 

  6. Devirian T, Volpe S (2003) The physiological effects of dietary boron. Crit Rev Food Sci Nutr 43:219–231

    Article  PubMed  CAS  Google Scholar 

  7. Volpe S, Taper L (1993) The relationship between boron and magnesium status and bone mineral density in the human: a review. Meacham SM Agnes Res 2:291–296

    Google Scholar 

  8. Rainey C, Nyquist L (1998) Relationships between boron concentrations and trout in the Firehole River, Wyoming. Biol Trace Elem Res 66:167–184

    Article  Google Scholar 

  9. Fort DJ, Propst TL, Stover EL et al (1998) Adverse reproductive and developmental effects in Xenopus from insufficient boron. Biol Trace Elem Res 66:237–259

    Article  PubMed  CAS  Google Scholar 

  10. Sheng MH-C, Taper LJ, Veit H et al (2001) Dietary boron supplementation enhances the effects of estrogen on bone mineral balance in ovariectomized rats. Biol Trace Elem Res 81:29–45

    Article  PubMed  CAS  Google Scholar 

  11. Wester RC, Hui X, Maibach HI et al (1998) In vivo percutaneous absorption of boron as boric acid, borax, and disodium octaborate tetrahydrate in humans. Biol Trace Elem Res 66:101–109

    Article  PubMed  CAS  Google Scholar 

  12. Bajoria R, Sooranna SR, Chatterjee R (2007) Leptin and bone turnover in monochorionic twins complicated by twin–twin transfusion syndrome. Osteoporos Int 18:193–200

    Article  PubMed  CAS  Google Scholar 

  13. Wang Y (2008) The mechanical research about the influence of boron to the hypothalamic–pituitary–ovary axis of ostrich chicks, in College of Animal Science and Veterinary Medicine. Huazhong Agricultural University, Wuhan, pp 26–27

    Google Scholar 

  14. Cilliers SC, Hayes JP, Chwalibog A et al (1998) Determination of energy, protein and amino acid requirements for maintenance and growth in ostriches. Anim Feed Sci Technol 72:283–293

    Article  CAS  Google Scholar 

  15. Lanza M, Fasone V, Galofaro V et al (2004) Citrus pulp as an ingredient in ostrich diet: effects on meat quality. Meat Sci 68:269–275

    Article  PubMed  CAS  Google Scholar 

  16. Liang CZ, Yang YJ (1996) Ostrich-raising management and disease control. Beijing Agricultural University Press, Beijing, pp 42–56

    Google Scholar 

  17. Cao JX (2002) Rats femoral ash and bone calcium content is determined. Chin J Environ Occup Med 19:188–189

    Google Scholar 

  18. Yeh F, Am G, Sm W (2006) Children who experience their first fracture at a young age have high rates of fracture. Osteoporos Int 17:267

    Article  PubMed  Google Scholar 

  19. Toshitaka N (2000) Concept of osteoporosis and its change (Japan). Curr Ther 18:180–184

    Google Scholar 

  20. Dan P (2008) Concept osteoporosis. Available at http://www.wikinvest.com/concept/Osteoporosis

  21. Li JS (2003) Leg disease of ostrich chicks. Agric Sci Technol Inform 11:31

    Google Scholar 

  22. Liu ZX, Tang XL (2001) Ostrich chick leg disease diagnosis. Shandong Poult 1:24–25

    Google Scholar 

  23. Qiang AZ, Ding YB (2001) Prevention brood period ostrich leg bending deformation disease. Ningxia Forest Technol 4:35

    Google Scholar 

  24. Wang WJ (2002) Ostrich nonnutritive embryonic disease. Henan J Anim Husbandry Vet Med 23:42

    Google Scholar 

  25. Sun E, Zheng C (2005) Influence factors of young ostrich survival rate. Jilin Anim Husbandry Vet 3:58

    Google Scholar 

  26. Bronner F, John PB, Lawrence GR et al (2002) Metals in bone: aluminum, boron, cadmium, chromium, lead, silicon, and strontium, in principles of bone biology, 2nd edn. Academic, San Diego, pp 359–369

    Google Scholar 

  27. Nielsen FH (2009) Micronutrients in parenteral nutrition: boron, silicon, and fluoride. Gastroenterology 137:S55–S60

    Article  PubMed  CAS  Google Scholar 

  28. Cooper C, Fall C, Egger P et al (1997) Growth in infancy and bone mass in later life. Ann Rheum Dis 56:17

    Article  PubMed  CAS  Google Scholar 

  29. Cooper C, Cawley M, Bhalla A et al (1995) Childhood growth, physical activity, and peak bone mass in women. J Bone Miner Res 10:940

    Article  PubMed  CAS  Google Scholar 

  30. Duppe H, Cooper C, Gardsell P et al (1997) The relationship between childhood growth, bone mass, and muscle strength in male and female adolescents. Calcif Tissue Int 60:405

    Article  PubMed  CAS  Google Scholar 

  31. Uysal T, Ustdal A, Sonmez MF et al (2009) Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits. Angle Orthod 79:984–990

    Article  PubMed  Google Scholar 

  32. Hakki SS, Bozkurt BS, Hakki EE (2010) Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). J Trace Elem Med Biol 24:243–250

    Article  PubMed  CAS  Google Scholar 

  33. Nielsen FH, Stoecker BJ (2009) Boron and fish oil have different beneficial effects on strength and trabecular microarchitecture of bone. J Trace Elem Med Biol 23:195–203

    Article  PubMed  CAS  Google Scholar 

  34. McCoy H, Kenney M, Montgomery C et al (1994) Relation of boron to the composition and mechanical properties of bone. Environ Health Perspect 1:49–53

    Google Scholar 

  35. Fail P, Chapin R, Price C et al (1998) General, reproductive, developmental, and endocrine toxicity of boronated compounds. Reprod Toxicol 12:1–18

    Article  PubMed  CAS  Google Scholar 

  36. Sabuncuoglu BT, Kocaturk PA, Yaman O et al (2006) Effects of subacute boric acid administration on rat kidney tissue. Clin Toxicol (Phila) 44:249–253

    Article  CAS  Google Scholar 

  37. Ku WW, Chapin RE, Wine RN et al (1993) Testicular toxicity of boric acid (BA): relationship of dose to lesion development and recovery in the F344 rat. Reprod Toxicol 7:305–319

    Article  PubMed  CAS  Google Scholar 

  38. Akcakus M, Kurtoglu S, Koklu E et al (2007) The relationship between birth weight leptin and bone mineral status in newborn infants. Neonatology 91:101–106

    Article  PubMed  CAS  Google Scholar 

  39. Steppan C, Dtckl CF (2000) Leptin is a potent stimulator of bone growth in ob mice. Regul Pept 92:73278

    Article  Google Scholar 

  40. Hamrick M, Pennington C, Newton D et al (2004) Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 34:376–383

    Article  PubMed  CAS  Google Scholar 

  41. Iwamoto I, Fujino T, Douchi T (2004) The leptin receptor in human osteoblasts and the direct effect of leptin on bone metabolism. Gynecol Endocrinol 19:23–25

    Article  Google Scholar 

  42. Milton L (2002) Awakening the silent osteoporosis market. Medical marketing & media. Available at http://findarticles.com/p/articles/mi_hb3272/is_200204/ai_n7972338

  43. Yamaguchi M, Kitajima T (1991) Effect of estrogen on bone metabolism in tissue culture: enhancement of the steroid effect by zinc. Res Exp Med 191:145–154

    Article  CAS  Google Scholar 

  44. Cooper C, Stakkestad JA, Radowicki S et al (1999) Matrix delivery transdermal 17β-estradiol for the prevention of bone loss in postmenopausal women. Osteoporos Int 9:358–366

    Article  PubMed  CAS  Google Scholar 

  45. Sowers MR, Finkelstein JS, Ettinger B et al (2003) The association of endogenous hormone concentrations and bone mineral density measures in pre- and perimenopausal women of four ethnic groups: SWAN. Osteoporos Int 14:44–52

    Article  PubMed  CAS  Google Scholar 

  46. Poet JL, Galinier PA, Tonolli SI et al (1993) Lumbar bone mineral density in anorexia nervosa. Clin Rheumatol 12:236–239

    Article  PubMed  CAS  Google Scholar 

  47. Gallardo-Williams MT, Maronpot RR, Turner CH et al (2003) Effects of boric acid supplementation on bone histomorphometry, metabolism, and biomechanical properties in aged female F-344 rats. Biol Trace Elem Res 93:155–169

    Article  PubMed  CAS  Google Scholar 

  48. Disilvio L, Jameson J, Gamie Z et al (2006) In vitro evaluation of the direct effect of estradiol on human osteoblasts (HOB) and human mesenchymal stem cells (h-MSCs). Injury 37:S33–S42

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China No. 30972152 and No. 39970547, and Specialized Research Fund for the Doctoral Program of China Higher Education No. 200805040023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemei Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, J., Peng, K., Jin, E. et al. Effect of Additional Boron on Tibias of African Ostrich Chicks. Biol Trace Elem Res 144, 538–549 (2011). https://doi.org/10.1007/s12011-011-9024-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9024-y

Keywords

Navigation