Skip to main content

Advertisement

Log in

Evaluation of Essential Trace and Toxic Elements in Biological Samples of Normal and Night Blindness Children of Age Groups 3–7 and 8–12 Years

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

An Erratum to this article was published on 22 December 2010

Abstract

The most common cause of blindness in developing countries is vitamin A deficiency. The World Health Organization estimates 13.8 million children to have some degree of visual loss related to vitamin A deficiency. The causes of night blindness in children are multifactorial, and particular consideration has been given to childhood nutritional deficiency, which is the most common problem found in underdeveloped countries. Such deficiency can result in physiological and pathological processes that in turn influence biological samples composition. Vitamin and mineral deficiency prevents more than two billion people from achieving their full intellectual and physical potential. This study was designed to compare the levels of Zn, Mg, Ca, K, Na, As, Cd, and Pb in scalp hair, blood, and urine of night blindness children age ranged 3–7 and 8–12 years of both genders, comparing them to sex- and age-matched controls. A microwave-assisted wet acid digestion procedure was developed as a sample pretreatment, for the determination of As, Ca, Cd, K, Pb, Mg, Na, and Zn in biological samples of night blindness children. The proposed method was validated by using conventional wet digestion and certified reference samples of hair, blood, and urine. The concentrations of trace and toxic elements were measured by atomic absorption spectrophotometer prior to microwave-assisted acid digestion. The results of this study showed that the mean values of As, Cd, Na, and Pb were significantly higher in scalp hair, blood, and urine samples of male and female night blindness children than in referents (p < 0.001), whereas the concentrations of Zn, Ca, K, and Mg were lower in the scalp hair and blood but higher in the urine samples of night blindness children. These data present guidance to clinicians and other professional investigating deficiency of essential mineral elements in biological samples (scalp hair and blood) of night blindness children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christian P, West KP, Khatry SK (2001) Maternal night blindness increases risk of mortality in the first 6 months of life among infants in Nepal. J Nutr 131:1510–1512

    PubMed  CAS  Google Scholar 

  2. Brody T (1999) Nutritional biochemistry, 2nd edn. Academic, San Diego

    Google Scholar 

  3. Semba RD (1997) Vitamin A and immunodeficiency virus infection. Proc Nutr Soc 56:459

    Article  PubMed  CAS  Google Scholar 

  4. Christian P, West KP (1998) Interaction between zinc and vitamin A: an update. Am J Clin Nutr 68:435

    Google Scholar 

  5. VandenLangenberg GM (1998) Associations between antioxidant and zinc intake and the 5-year incidence of early age-related maculopathy in the beaver dam eye study. Am J Epidemiol 148(2):204–214

    PubMed  CAS  Google Scholar 

  6. Munoz EC, Rosado C, Lopaz P (2000) Iron and zinc supplementation improve indicators of vitamin A status of preschoolers. Am J Clin Nutr 71:789–794

    PubMed  CAS  Google Scholar 

  7. Weaver CM, Peacock M, Martin BR et al (1996) Calcium retention estimated from indicators of skeletal status in adolescent girls and young women. Am J Clin Nutr 64:67–70

    PubMed  CAS  Google Scholar 

  8. Weaver CM (2001) Calcium. In: Bowman BA, Russell RM (eds) Present knowledge in nutrition, 8th edn. ILSI, Washington, DC, pp 273–280

    Google Scholar 

  9. Abrams SA, Stuff JE (1994) Calcium metabolism in girls: current dietary intakes lead to low rates of calcium absorption and retention during puberty. Am J Clin Nutr 60:739–743

    PubMed  CAS  Google Scholar 

  10. Abrams SA, Grusak MA, Stuff J, O’Brien KO (1997) Calcium and magnesium balance in 9–14-y-old children. Am J Clin Nutr 66:1172–1177

    PubMed  CAS  Google Scholar 

  11. Siva ME, Subramanian KN (eds) (1995) Kinetic models of trace element and mineral metabolism during development. CRC, Boca Raton, pp 159–170

  12. Bech-Hansen NT, Naylor MJ, Maybaum TA et al (1998) Loss-of-function mutations in a calcium-channel a1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet 19:264–267

    Article  PubMed  CAS  Google Scholar 

  13. Morgans CW, Gaughwin P, Maleszka R (2001) Expression of the alpha1F calcium channel subunit by photoreceptors in the rat retina. Mol Vis 7:202–209

    PubMed  CAS  Google Scholar 

  14. Harada M, Ueshima K (1997) Correlation between blood ionized magnesium and pathophysiology of ischemic heart disease (in Japanese with English abstract). J Iwate Med Assoc 49:453–458

    CAS  Google Scholar 

  15. Goto Y, Nakamura M, Abe S et al (1993) Physiological correlates of abnormal behaviors in magnesium-deficient rats. Epilepsy Res 15:81–89

    Article  PubMed  CAS  Google Scholar 

  16. Saris NE, Mervaala J, Karpanen H, Khawaja JA, Lewenstam A (2000) Magnesium: an update on physiological, clinical and analytical aspects. Clin Chem Acta 294:1–26

    Article  CAS  Google Scholar 

  17. Laurant P, Touyz RM (2000) Physiological and pathophysiological role of magnesium in the cardiovascular system: implications in hypertension. J Hypertens 18:1177–1191

    Article  PubMed  CAS  Google Scholar 

  18. Kirschmann GJ (1996) Nutrition Almanac, 4th edn. McGraw Hill, New York, pp 78–87

    Google Scholar 

  19. Quamme GA (1997) Renal magnesium handling: new insights in understanding old problems. Kidney Int 52:1180–1195

    Article  PubMed  CAS  Google Scholar 

  20. National Research Council (1989) Recommended dietary allowances, 10th edn. National Academy, Washington, DC

    Google Scholar 

  21. Kelepouris E, Kasama R, Agus ZS (1993) Effects of intracellular magnesium on calcium, potassium and chloride channels. Miner Electrolyte Metab 19:277–281

    PubMed  CAS  Google Scholar 

  22. Howes LG (1995) Which drugs affect potassium? Drug Saf 12(4):240–244

    Article  PubMed  CAS  Google Scholar 

  23. Iso H, Stampfer MJ, Manson JE et al (1999) Prospective study of calcium, potassium, and magnesium intake and risk of stroke in women. Stroke 30(9):1772–1779

    Article  PubMed  CAS  Google Scholar 

  24. Wielopolski L, Ramirez LM, Gallagher D et al (2006) Measuring partial body potassium in the arm versus total body potassium. J Appl Physiol 101:945–949

    Article  PubMed  CAS  Google Scholar 

  25. Rosanoff A (2005) Magnesium and hypertension. Clin Calcium 15(2):255–260

    PubMed  CAS  Google Scholar 

  26. Grant FD, Romero JR, Jeunemaitre X et al (2002) Low-renin hypertension, altered sodium homeostasis, and an alpha-adducin. Hypertension 39:191–196

    Article  PubMed  CAS  Google Scholar 

  27. Rocchini AP (1994) The relationship of sodium sensitivity to insulin resistance. Am J Med Sci 307(suppl 1):S75–S80

    PubMed  Google Scholar 

  28. Weinberger MH, Wagner UL, Fineberg NS (1993) The blood pressure effects of calcium supplementation in humans of known sodium responsiveness. Am J Hypertens 6:799–805

    PubMed  CAS  Google Scholar 

  29. Kassab S, Kato T, Wilkins FC et al (1995) Renal denervation attenuates the sodium retention and hypertension associated with obesity. Hypertension 25:893–897

    PubMed  CAS  Google Scholar 

  30. Fox DA, Campbell ML, Blocker YS (1997) Functional alterations and apoptotic cell death in the retina following developmental or adult lead exposure. Neurotoxicology 18:645–664

    PubMed  CAS  Google Scholar 

  31. Bressler J, Kim KA, Chakraborti C, Goldstein G (1999) Mechanism of lead neurotoxicity. Neurochem Res 24:595–600

    Article  PubMed  CAS  Google Scholar 

  32. Humphreys DJ (1991) Effects of exposure to excessive quantities of lead on animals. Br Vet J 147:18–30

    PubMed  CAS  Google Scholar 

  33. Khalil-Manesh F, Gonik HC, Weiler EJ et al (1993) Lead-induced hypertension: possible role of endothelial factors. Am J Hypertens 6:723–729

    PubMed  CAS  Google Scholar 

  34. Eichenbaum JW, Zheng W (2000) Distribution of lead and transthyretin in human eyes. Clin Toxicol 38:377–381

    Article  CAS  Google Scholar 

  35. Hu H, Rabinowitz M, Smith D (1998) Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms. Env Health Persp 105:1–8

    Article  Google Scholar 

  36. Cavallaro T, Martone RL, Dwork AJ et al (1990) The retinal pigment epithelium is the unique site of transthyretin synthesis in the rat eye. Invest Ophthal Vis Sci 31:497–501

    PubMed  CAS  Google Scholar 

  37. Zheng W, Shen H, Blaner WS et al (1996) Chronic lead exposure alters transthyretin concentration in rat cerebrospinal fluid: the role of the choroid plexus. Toxicol Appl Pharmacol 139:445–450

    Article  PubMed  CAS  Google Scholar 

  38. Satarug S, Baker JR, Urbenjapol S et al (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83

    Article  PubMed  CAS  Google Scholar 

  39. Zheng W, Blaner WS, Zhao Q (1999) Inhibition by Pb of production and secretion of transthyretin in the choroid plexus: its relationship to thyroxine transport at the blood–CSF barrier. Toxicol Appl Pharmacol 155:24–31

    Article  PubMed  CAS  Google Scholar 

  40. Stillman MJ, Presta A (2000) Characterizing metal ion interactions with biological molecules—the spectroscopy of metallothionein. In: Zalups RZ, Koropatnick J (eds) Molecular biology and toxicology of metals. Taylor & Francis, New York, pp 276–299

    Google Scholar 

  41. Afridi HI, Kazi TG, Kazi GH et al (2006) Essential trace and toxic element distribution in the scalp hair of Pakistani myocardial infarction patients and controls. Biol Trace Elem Res 113:19–34

    Article  PubMed  CAS  Google Scholar 

  42. Polkowska Z, Kozlowska K, Namiesnik J, Przyjazny A (2004) Biological fluids as a source of information on the exposure of man to environmental chemical agents. Crit Rev Anal Chem 34(2):105–119

    Article  CAS  Google Scholar 

  43. Rodushkin I, Odman OF, Olofsson R, Axelsson MD (2000) Determination of 60 elements in whole blood by sector field inductively coupled plasma mass spectrometry. J Anal Atomic spectrom 15(8):937–944

    Article  CAS  Google Scholar 

  44. Kimble MS (1939) The photoelectric determination of vitamin A and carotene in human plasma. J Lab Clin Med 24:1055

    CAS  Google Scholar 

  45. Kazi TG, Arain MB, Baig JA, Jamali MK, Afridi HI, Jalbani N, Sarfraz RA, Niaz A (2009) The correlation of arsenic levels in drinking water with the biological samples of skin disorders. Sci Total Environ 407:1019–1026

    PubMed  CAS  Google Scholar 

  46. Kazi TG, Jalbani N, Kazi N, Arain MB, Jamali MK, Afridi HI, Kandhro GA, Raja AS, Shah AQ, Ansari R (2009) Estimation of toxic metals in scalp hair samples of chronic kidney patient. Biol Trace Elem Res 125(3):16–27

    Article  Google Scholar 

  47. Afridi HI, Kazi TG, Kazi GH (2006) Analysis of heavy metals in scalp hair samples of hypertensive patients by conventional and microwave digestion methods. Spectroscopy letter 39:203–214

    Article  CAS  Google Scholar 

  48. Kazi TG, Afridi HI, Kazi GH, Jamali MK, Arain MB, Jalbani N (2006) Evaluation of essential and toxic metals by ultrasound-assisted acid leaching from scalp hair samples of children with macular degeneration patients. Clin Chim Acta 369(1):52–60

    Article  PubMed  CAS  Google Scholar 

  49. Cespon-Romero RM, Yebra-Biurrun MC (2007) Flow injection determination of lead and cadmium in hair samples from workers exposed to welding fumes. Anal Chim Acta 600:221–225

    Article  PubMed  CAS  Google Scholar 

  50. Isbir T (1997) Mean zinc contents of serum, hair, erythrocytes, and urine of 32 children. Trace Elem Electrolytes 14(2):87–90

    CAS  Google Scholar 

  51. Lynch SR (1997) Interaction of iron with other nutrients. Nutr Rev 77(4):102

    Google Scholar 

  52. Ugarte M, Osborne NN (2001) Zinc in the retina. Prog Neurobiol 64:219–249

    Article  PubMed  CAS  Google Scholar 

  53. Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals, 2nd edn. Springer, New York, p 866

    Google Scholar 

  54. Meneton P, Jeunemaitre X, De Wardener HE, MacGregor GA (2005) Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol Rev 85:679–715

    Article  PubMed  CAS  Google Scholar 

  55. Schneeweis DM, Schnapf JL (1999) The photovoltage of macaque cone photoreceptors: adaptation, noise, and kinetics. J Neurosci 19:1203–1216

    PubMed  CAS  Google Scholar 

  56. Schneeweis DM, Schnapf JL (1995) Photovoltage of rods and cones in the macaque retina. Science 268:1053–1056

    Article  PubMed  CAS  Google Scholar 

  57. Field G, Rieke F (2002) Mechanisms regulating variability of the single photon responses of mammalian rod photoreceptors. Neuron 35:733–747

    Article  PubMed  CAS  Google Scholar 

  58. Berntson A, Smith R, Taylor W (2004) Transmission of single photon signals through a binary synapse in the mammalian retina. Vis Neurosci 21:693–702

    PubMed  Google Scholar 

  59. Dowling JE, Ripps H (1972) Adaptation in skate photoreceptors. J Gen Physiol 60(6):698–719

    Article  PubMed  CAS  Google Scholar 

  60. Murakami M, Ohtsuka T, Shimazaki H (1975) Effects of aspartate and glutamate on the bipolar cells of the carp retina. Vis Res I5:456–458

    Article  Google Scholar 

  61. Griff ER, Steinberg RH (1982) Origin of the light peak: in vitro study of Gekko gekko. J Physiol 331:637–652

    PubMed  CAS  Google Scholar 

  62. Oakley BII, Green DG (1976) Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. J Neurophysiol 39:1117–1133

    PubMed  CAS  Google Scholar 

  63. Brown JE, Pinto LH (1974) Ionic mechanism for the photoreceptor potential of the retina of Bufo marinus. J Physiol (Lond) 236:575–591

    CAS  Google Scholar 

  64. Hagins WA (1972) The visual process: excitatory mechanisms in the primary receptor cells. Annu Rev Biophys Bioeng 1:131–158

    Article  PubMed  CAS  Google Scholar 

  65. Bridges CDB (1970) Biochemistry of vision. In: Graymore CN (ed) Biochemistry of the eye. Academic, New York, pp 564–635

    Google Scholar 

  66. Young RW, Bok D (1969) Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biol 42:392–403

    Article  PubMed  CAS  Google Scholar 

  67. Young RW, Droz B (1968) The renewal of protein in retinal rods and cones. J Cell Biol 39:169–184

    Article  PubMed  CAS  Google Scholar 

  68. Llinas R, Steinberg IZ, Walton K (1976) Presynaptic calcium currents and their relation to synaptic transmission: voltage clamp study in squid giant synapse and theoretical model for the calcium gate. Proc Natl Acad Sci USA 73:2918–2922

    Article  PubMed  CAS  Google Scholar 

  69. Ripps H, Snapper AG (1974) Computer analysis of photochemical changes in the human retina. Cornput Biol Med 4:107–120

    Article  CAS  Google Scholar 

  70. Carr RE, Ripps H, Siegel IM (1974) Visual pigment kinetics and adaptation in fundus albipunctatus. Doc Ophthalmol Proc Ser 9:193

    Google Scholar 

  71. Yiin SJ, Chern CL, She JY et al (1999) Cadmium induced renal lipid peroxidation in rats and protection by selenium. J Toxicol Environ Health A 57:403–413

    Article  PubMed  CAS  Google Scholar 

  72. Bhattacharyya MH, Wilson AK, Ragan SS, Jonch M (2000) Biochemical pathways in cadmium toxicity. In: Zalups RZ, Koropatnick J (eds) Molecular biology and toxicology of metals. Taylor & Francis, New York, pp 276–299

    Google Scholar 

  73. Fox DA, Sillman AJ (1979) Heavy metals affect rods, but not cone photoreceptors. Science 206:78–80

    Article  PubMed  CAS  Google Scholar 

  74. Bushnell PJ, Bowman RE (1977) Scotopic vision deficits in young monkeys exposed to lead. Science 196:333–335

    Article  PubMed  CAS  Google Scholar 

  75. Brown DVL (1974) Reactions of the rabbit retinal pigment epithelium to systemic lead poisoning. Trans Am Ophthalmol Soc Annu Meet 72:404–447

    CAS  Google Scholar 

  76. Hughes WF, Coogan P (1974) Pathology of the retinal pigment epithelium and retina in rabbits poisoned with lead. Am J Pathol 77:237–254

    PubMed  CAS  Google Scholar 

  77. Beatty S, Koh H, Phil M et al (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115–134

    Article  PubMed  CAS  Google Scholar 

  78. Brown MM, Rhyne BC, Goyer BA (1976) The intracellular effects of chronic arsenic exposure on renal proximal tubular cells. J Toxicol Environ Health 1:505–514

    Article  PubMed  CAS  Google Scholar 

  79. Vahter M, Concha G (2001) Role of metabolism in arsenic toxicity. Pharmacol Toxicol 89:1–5

    Article  PubMed  CAS  Google Scholar 

  80. National Research Council (NRC) (1999) Arsenic in drinking water. National Academy, Washington, DC

    Google Scholar 

  81. Gorby MS (1994) Arsenic in human medicine. In: Nriagu JO (ed) Arsenic in the environment: part II. Human health and ecosystem effects. Wiley, New York, pp 1–16

    Google Scholar 

  82. Morton WE, Dunnette DA (1994) Health effects of environmental arsenic. In: Nriagu JO (ed) Arsenic in the environment: part II. Human health and ecosystem effects. Wiley, New York, pp 17–34

    Google Scholar 

  83. Potts AM, Au PC (1976) The affinity of melanin for inorganic ions. Exp Eye Res 22:487–491

    Article  PubMed  CAS  Google Scholar 

  84. Larrson BS (1993) Interaction between chemicals and melanin. Pigment Cell Res 6:127–133

    Article  Google Scholar 

  85. Panessa BJ, Zadunaisky JA (1981) Pigment granules: a calcium reservoir in the vertebrate eye. Exp Eye Res 32:593–604

    Article  PubMed  CAS  Google Scholar 

  86. Samuelson DA, Smith P, Ulshafer FJ et al (1993) X-ray microanalysis of ocular melanin in pigs maintained in normal and low zinc diets. Exp Eye Res 56:63–70

    Article  PubMed  CAS  Google Scholar 

  87. Jamall IS, Roque H (1989–1990) Cadmium-induced alterations of ocular trace elements. Influence of dietary selenium and copper. Biol Trace Elem Res 23:55–63

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the Higher Education Commission of Pakistan for sponsoring this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Imran Afridi.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12011-010-8926-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afridi, H.I., Kazi, T.G., Kazi, N. et al. Evaluation of Essential Trace and Toxic Elements in Biological Samples of Normal and Night Blindness Children of Age Groups 3–7 and 8–12 Years. Biol Trace Elem Res 143, 20–40 (2011). https://doi.org/10.1007/s12011-010-8834-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8834-7

Keywords

Navigation