, Volume 122, Issue 2, pp 107-121

Response of Selenium Status Indicators to Supplementation of Healthy North American Men with High-Selenium Yeast

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The essential nutrient selenium is required in microgram amounts [recommended dietary allowance (RDA) = 55 μg/day, 699 nmol/day] and has a narrow margin of safety (upper tolerable intake limit = 400 μg/day, 5 μmol/day). We conducted a randomized placebo-controlled study of high-selenium yeast, the form used in most supplements (300 μg/day, 3.8 μmol/day), administered to 42 free-living healthy men for 48 weeks. Dietary intakes of selenium, macronutrients, and micronutrients were not different between groups and did not change during the study. Supplementation more than doubled urinary selenium excretion from 69 to 160 μg/day (876 to 2,032 nmol/day). Urinary excretion was correlated with recent selenium intake estimated from 3-day diet records: urinary selenium excretion = 42 μg/day (533 nmol/day) + 0.132 × dietary selenium intake, p < 0.001. Dietary selenium intake was not significantly correlated with the other indicators of selenium status, presumably because urinary selenium excretion reflected recent intake, and tissue selenium was homeostatically controlled. After 48 weeks of supplementation, plasma selenium was increased 60% from 142 to 228 μg/l (1.8 to 2.9 μmol/l), and erythrocyte selenium was approximately doubled from 261 to 524 μg/l (3.3 to 6.6 μmol/l). Selenium concentrations increased more modestly in hair (56%) and platelets (42%). Platelets were the only blood component in which glutathione peroxidase activity was significantly related to selenium content. Selenium levels decreased rapidly after the end of supplementation, and there were no significant differences in selenium status indicators between groups by week 96. The absorption, distribution, and excretion of selenium from high-Se yeast were similar to selenium in foods.