Skip to main content
Log in

Characterization and Distribution of the Selected Metals in the Scalp Hair of Cancer Patients in Comparison with Normal Donors

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Eighteen metals were estimated in the scalp hair samples from cancer patients (n = 111) and normal donors (n = 113). Nitric acid–perchloric acid wet digestion procedure was used for the quantification of the selected metals by flame atomic absorption spectrophotometry. In the scalp hair of cancer patients, highest average levels were found for Ca (861 μg/g), followed by Na (672 μg/g), Zn (411 μg/g), Mg (348 μg/g), Fe (154 μg/g), Sr (129 μg/g), and K (116 μg/g), whereas in comparison, the dominant metals in the scalp hair of normal donors were Ca (568 μg/g), Zn (177 μg/g), Mg (154 μg/g), Fe (110 μg/g), and Na (103 μg/g). The concentrations of Ca, Cd, Co, Cr, Fe, K, Mg, Mn, Na, Ni, Pb, Sb, Sr, and Zn were notably higher in the hair of cancer patients as compared with normal donors, which may lead to a number of physiological disorders. Strong positive correlations were found in Mn–Pb (0.83), Cd–Cr (0.82), Cd–Li (0.57), Fe–Pb (0.56), and Fe–Mn (0.55) in the hair of cancer patients whereas Na–Cd, Li–Cr, Li–Co, Co–Cd, Li–Cd, Na–Co, Na–Li, Ca–Mg and Na–Cr exhibited strong relationships (r > 0.50) in the hair of normal donors. Principal Component Analysis (PCA) of the data revealed seven PCs, both for cancer patients and normal donors, but with significantly different loadings. Cluster Analysis (CA) was also used to support the PCA results. The study evidenced significantly different pattern of metal distribution in the hair of cancer patients in comparison with normal donors. The role of trace metals in carcinogenesis was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pereira R, Ribeiro R, Goncalves F (2004) Scalp hair analysis as a tool in assessing human exposure to heavy metals (S. Domingos mine, Portugal). Sci Total Environ 327:81–92

    Article  PubMed  CAS  Google Scholar 

  2. Nadal M, Bocio A, Schuhmacher M, Domingo JL (2005) Monitoring metals in the population living in the vicinity of hazardous waste incinerator: levels in hair of school children. Biol Trace Elem Res 104:203–214

    Article  PubMed  CAS  Google Scholar 

  3. Goyer RA (1993) Toxic effects of metals, in Caserett and Doull’s Toxicology—The basic science of poisons. McGraw-Hill, NY

    Google Scholar 

  4. Lindh U, Carlmark B, Gronquist SO, Lindvall A (2001) Metal exposure from amalgam alters the distribution of trace elements in blood cells and plasma. Clin Chem Lab Med 39(2):134–142

    Article  PubMed  CAS  Google Scholar 

  5. Boadi WY, Urbach J, Branes JM, Yannai S (1992) In vitro exposure to mercury and cadmium alters term human placental membrane fluidity. Pharmacology 116(1):17–23

    CAS  Google Scholar 

  6. Semczuk M, Semczuk-Sikora A (2001) New data on toxic metal intoxication (Cd, Pb, and Hg in particular) and Mg status during pregnancy. Med Sci Monit 7(2):332–340

    PubMed  CAS  Google Scholar 

  7. Schrauzer GN (1980) The role of trace element in the etiology of cancer. In: Bratter P, Schramel P (eds) Trace element analytical chemistry in medicine and biology. Walter de Gruyter & Co, Berlin, pp 183–198

    Google Scholar 

  8. Nielsen FH (1991) Trace and ultra race element in health and disease. Compr Ther 17:20–26

    PubMed  CAS  Google Scholar 

  9. Leung PL, Huang HM (1997) Analysis of trace elements in hair of volunteers suffering from Naso-Pharyngeal Cancer. Biol Trace Elem Res 57:19–25

    PubMed  CAS  Google Scholar 

  10. Leung PL, Huang HM (1998) Following the recovery of Naso-Pharyngeal Cancer patients by trace elements in hair using Pattern recognition Methods. Biol Trace Elem Res 62:235–253

    PubMed  CAS  Google Scholar 

  11. Piccinini L, Borella P, Bargellini A, Medici CI, Zoboli A (1996) A case study on selenium, zinc, and copper in plasma and hair of subjects affected by breast and lung cancer. Biol Trace Elem Res 51:23–29

    PubMed  CAS  Google Scholar 

  12. Borella P, Bargellini A, Caselgrandi E, Piccinini L (1997) Observation on the use of plasma, hair and tissue to evaluate trace element status in cancer. J. Trace Elem Med Biol 11:162–165

    PubMed  CAS  Google Scholar 

  13. Kilic E, Ozturk S, Demiroglu A, Yilmaz Z, Yildaz Z, Akkurt M, Saraymen R, Ok E (2004) Analysis of element content in scalp hair of healthy people and breast cancer patients with SEM/EDX method. N Z Med J 117:1–3

    Google Scholar 

  14. MacPherson A, Basco J (2000) Relationship of hair calcium concentration to incidence of coronary heart disease. Sci Total Environ 255:11–19

    Article  PubMed  CAS  Google Scholar 

  15. Smart RC (2004) Chemical carcinogenesis. In: Hodgson E (ed) A text book of modern toxicology 3rd ed. John Wiley & Sons Inc., New Jersey, pp. 225–250

    Google Scholar 

  16. Dombovari J, Papp L (1998) Comparison of sample preparation methods for elemental analysis of human hair. Microchem J 59(2):187–193

    Article  CAS  Google Scholar 

  17. Ashraf W, Jaffar M, Mohammad D (1995) Comparison of trace metal levels in the hair of Pakistani urban and rural adult male population. Int J Environ Stud 47:63–68

    Article  CAS  Google Scholar 

  18. StatSoft, Inc (1999) STATISTICA for windows, Computer program manual. Tulsa, OK

    Google Scholar 

  19. Hayes RB (1997) The carcinogenicity of metals in humans. Cancer Causes Control 8:371–385 and references cited therein

    Article  PubMed  CAS  Google Scholar 

  20. Snow ET (1992) Metal carcinogenesis: mechanistic implications. Pharmacol Ther 53:31–65

    Article  PubMed  CAS  Google Scholar 

  21. Drasch G, Schopfer J, Schrauzer GN (2005) Selenium/Cadmium rations in human prostrates. Indicators for prostate cancer risk of smokers and non-smokers and relevance to the cancer protective effects of selenium. Biol Trace Elem Res 103:103–107

    Article  PubMed  CAS  Google Scholar 

  22. Schrauzer GN (2000) Anticarcinogenic effects of selenium. Cell Mol Life Sci 57:1864–1873 and references cited therein

    Article  PubMed  CAS  Google Scholar 

  23. Stayner L, Smith R, Schnorr T, Lemen R, Thun M (1993) Letter regarding cadmium and lung cancer. Ann Epidemiol 3:114–116

    Article  PubMed  CAS  Google Scholar 

  24. Schrauzer GN, White DA, Schneider CJ (1977) Cancer mortality correlation studies. IV. Associations with dietary intake and blood levels of certain trace elements, notably Se-antagonists. Bioinorg Chem 7:35–56

    Article  PubMed  CAS  Google Scholar 

  25. Fanning D (1988) A mortality study of lead workers, 1925–1985. Arch Environ Health 43:247–251

    Article  PubMed  CAS  Google Scholar 

  26. Selevan SG, Landrigan PJ, Stern FB, Jones JH (1996) Mortality of lead smelter workers. Am J Epidemiol 122:673–683

    Google Scholar 

  27. Schrauzer GN (2006) Interactive effects of selenium and chromium on mammary tumor development and growth in MMTV-infected female mice and their relevance to human cancer. Biol Trace Elem Res 109:281–292

    Article  PubMed  CAS  Google Scholar 

  28. Czauderna M, Rochalska M (1989) Interaction between selenium and chromium and distribution of zinc, rubidium, cobalt and iron in mice given chromate ions and selenium compounds. J Radioanal Nucl Chem 134:383–392

    Article  CAS  Google Scholar 

  29. Schrauzer GN, Shrestha KP, Molenaar YB, Mead S (1986) Effects of chromium supplementation on food energy utilization and the trace element composition of the liver and the heart of glucose exposed young mice. Biol Trace Elem Res 9:79–87

    Article  CAS  Google Scholar 

  30. Singh V, Garg AN (1998) Trace element correlations in the blood of Indian women with breast cancer. Biol Trace Elem Res 64:237–245

    PubMed  CAS  Google Scholar 

  31. Davies JM (1984) Lung cancer mortality among workers making lead chromate and zinc chromate pigments in three English factories. Br J Ind Med 41:158–169

    PubMed  CAS  Google Scholar 

  32. Robinson MF, McKenzie JM, Thomson CD, van Rij AL (1973) Metabolic balance of zinc, copper, cadmium, iron, molybdenum and selenium in young New Zealand women. Br J Nutr 30:195–205

    Article  PubMed  CAS  Google Scholar 

  33. Langard S, Vigander T (1983) Occurrence of lung cancer in workers producing chromium pigments. Br J Ind Med 40:71–74

    PubMed  CAS  Google Scholar 

  34. Hayes RB, Sheffet A, Spirtas R (1989) Cancer mortality among a cohort of chromium pigment workers. Am J Ind Med 16:127–133

    Article  PubMed  CAS  Google Scholar 

  35. Davies JM, Easton DF, Bidstrup PL (1991) Mortality from respiratory cancer and other causes in United Kingdom chromate production workers. Br J Ind Med 48:299–313

    PubMed  CAS  Google Scholar 

  36. Xu Z, Wang C (1999) Relationship between tumor and trace elements in hair. Guangdong Weiliang Yuansu Kexue 6:24–27

    Google Scholar 

  37. Kolmogorov Y, Kovaleva V, Gonchar A (2000) Analysis of trace elements in scalp hair of healthy people, hyperplasia and breast cancer patients with XRF method. Nucl Inst Methods Phys Res 448:457–460

    Article  CAS  Google Scholar 

  38. Clodfelder BJ, Chang C, Vincent JB (2004) Absorption of the biomimetic chromium cation triaqua-3-oxo-μ-hexapropionatotrichromium (III) in rats. Biol Trace Elem Res 97:1–11

    Article  Google Scholar 

  39. Kasprzak KS (1995) Possible role of oxidative damage in metal induced carcinogenesis. Cancer Investig 13:411–430

    CAS  Google Scholar 

  40. Sunderman Jr (1989) Mechanisms of nickel carcinogenesis. Scand J Work Environ Health 15:1–12

    PubMed  CAS  Google Scholar 

  41. Grandjean P, Andersen O, Nielsen GD (1988) Carcinogenicity of occupational nickel exposures and evaluation of the epidemiological evidence. Am J Ind Med 13:193–210

    Article  PubMed  CAS  Google Scholar 

  42. Schnorr TM, Steenland K, Thun MJ, Rinsky RA (1995) Mortality in a cohort of antimony smelter workers. Am J Ind Med 27:759–770

    Article  PubMed  CAS  Google Scholar 

  43. Lauwerys R, Lison D (1994) Health risks associated with cobalt exposure—an overview. Sci Total Environ 150:1–6

    Article  PubMed  CAS  Google Scholar 

  44. Ennever FK (1994) Metals. In: Hayes AW (ed) Principles and Methods of Toxicology, 3rd Edition. Raven Press, New York, USA, pp 417–446

    Google Scholar 

  45. Ashraf W, Jaffar M, Mohammad D, Iqbal J (1995) Utilization of scalp hair for evaluating epilepsy in male and female groups of Pakistan population. Sci Total Environ 164:69–73

    Article  PubMed  CAS  Google Scholar 

  46. Khalique A, Ahmad S, Anjum T, Jaffar M, Shah MH, Shaheen N, Tariq SR, Manzoor S (2005) A comparative study based on gender and age dependence of selected metals in scalp hair. Environ Monit Assess 104:45–57

    Article  PubMed  CAS  Google Scholar 

  47. Hopke PK (1992) Factor and correlation analysis of multivariate environmental data, In: Hewitt CN (ed) Methods of environmental data analysis. Elsevier Applied Sciences, London, UK, pp 139–180

    Google Scholar 

  48. Jackson JE (1991) A user’s guide to principal components. Wiley, New York

    Google Scholar 

  49. Jobson JD (1991) Applied multivariate data analysis. Springer-Verlag, New York

    Google Scholar 

Download references

Acknowledgments

The funding by Higher Education Commission, Government of Pakistan, to carry out this project is thankfully acknowledged. We are also grateful to the administration of POF Hospital, Wah Cantt and Christian Hospital, Taxilla for their invaluable help during the hair sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munir H. Shah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasha, Q., Malik, S.A., Iqbal, J. et al. Characterization and Distribution of the Selected Metals in the Scalp Hair of Cancer Patients in Comparison with Normal Donors. Biol Trace Elem Res 118, 207–216 (2007). https://doi.org/10.1007/s12011-007-0035-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-0035-7

Keywords

Navigation