Skip to main content
Log in

Influences of Media Compositions on Characteristics of Isolated Bacteria Exhibiting Lignocellulolytic Activities from Various Environmental Sites

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Efficient isolation of lignocellulolytic bacteria is essential for the utilization of lignocellulosic biomass. In this study, bacteria with cellulolytic, xylanolytic, and lignolytic activities were isolated from environmental sites such as mountain, wetland, and mudflat using isolation media containing the combination of lignocellulose components (cellulose, xylan, and lignin). Eighty-nine isolates from the isolation media were characterized by analyzing taxonomic ranks and cellulolytic, xylanolytic, and lignolytic activities. Most of the cellulolytic bacteria showed multienzymatic activities including xylanolytic activity. The isolation media without lignin were efficient in isolating bacteria exhibiting multienzymatic activities even including lignolytic activity, whereas a lignin-containing medium was effective to isolate bacteria exhibiting lignolytic activity only. Multienzymatic activities were mainly observed in Bacillus and Streptomyces, while Burkholderia was the most abundant genus with lignolytic activity only. This study provides insight into isolation medium for efficient isolation of lignocellulose-degrading microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jeon, H., Kang, K. E., Jeong, J. S., Gong, G., Choi, J. W., Abimanyu, H., Ahn, B. S., Suh, D. J., & Choi, G. W. (2014). Production of anhydrous ethanol using oil palm empty fruit bunch in a pilot plant. Biomass & Bioenergy, 67, 99–107.

    Article  CAS  Google Scholar 

  2. Han, M., Kim, Y., Cho, W. S., Choi, G. W., & Chung, B. W. (2015). An integrated process for continuous cellulosic bioethanol production. Korean Journal of Chemical Engineering, 33, 223–229.

    Article  Google Scholar 

  3. Mawhood, R., Gazis, E., de Jong, S., Hoefnagels, R., & Slade, R. (2016). Production pathways for renewable jet fuel: a review of commercialization status and future prospects. Biofuels, Bioproducts and Biorefining, 10, 462–484.

    Article  CAS  Google Scholar 

  4. Lee, C. S., Jung, Y. T., Park, S., Oh, T. K., & Yoon, J. H. (2010). Lysinibacillus xylanilyticus sp. nov., a xylan-degrading bacterium isolated from forest humus. International Journal of Systematic and Evolutionary Microbiology, 60, 281–286.

    Article  CAS  Google Scholar 

  5. Moreira, L. R., & Filho, E. X. (2016). Insights into the mechanism of enzymatic hydrolysis of xylan. Applied Microbiology and Biotechnology, 100, 5205–5214.

    Article  CAS  Google Scholar 

  6. Sizova, M. V., Izquierdo, J. A., Panikov, N. S., & Lynd, L. R. (2011). Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost. Applied and Environmental Microbiology, 77, 2282–2291.

    Article  CAS  Google Scholar 

  7. Perez, J., Munoz-Dorado, J., de la Rubia, T., & Martinez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology, 5, 53–63.

    Article  CAS  Google Scholar 

  8. Beckham, G. T., Johnson, C. W., Karp, E. M., Salvachua, D., & Vardon, D. R. (2016). Opportunities and challenges in biological lignin valorization. Current Opinion in Biotechnology, 42, 40–53.

    Article  CAS  Google Scholar 

  9. Seto, M., Kimbara, K., Shimura, M., Hatta, T., Fukuda, M., & Yano, K. (1995). A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1. Applied and Environmental Microbiology, 61, 3353–3358.

    CAS  Google Scholar 

  10. Ramachandra, M., Crawford, D. L., & Hertel, G. (1988). Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Applied and Environmental Microbiology, 54, 3057–3063.

    CAS  Google Scholar 

  11. Deangelis, K. M., D’Haeseleer, P., Chivian, D., Fortney, J. L., Khudyakov, J., Simmons, B., Woo, H., Arkin, A. P., Davenport, K. W., Goodwin, L., Chen, A., Ivanova, N., Kyrpides, N. C., Mavromatis, K., Woyke, T., & Hazen, T. C. (2011). Complete genome sequence of “Enterobacter lignolyticus” SCF1. Standards in Genomic Sciences, 5, 69–85.

    Article  CAS  Google Scholar 

  12. Woo, H. L., Hazen, T. C., Simmons, B. A., & DeAngelis, K. M. (2014). Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Systematic and Applied Microbiology, 37, 60–67.

    Article  CAS  Google Scholar 

  13. Ventorino, V., Aliberti, A., Faraco, V., Robertiello, A., Giacobbe, S., Ercolini, D., Amore, A., Fagnano, M., & Pepe, O. (2015). Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application. Scientific Reports, 5, 8161.

    Article  CAS  Google Scholar 

  14. Mathews, S. L., Pawlak, J., & Grunden, A. M. (2015). Bacterial biodegradation and bioconversion of industrial lignocellulosic streams. Applied Microbiology and Biotechnology, 99, 2939–2954.

    Article  CAS  Google Scholar 

  15. Mathews, S. L., Grunden, A. M., & Pawlak, J. (2016). Degradation of lignocellulose and lignin by Paenibacillus glucanolyticus. International Biodeterioration and Biodegradation, 110, 79–86.

    Article  CAS  Google Scholar 

  16. Huang, X. F., Santhanam, N., Badri, D. V., Hunter, W. J., Manter, D. K., Decker, S. R., Vivanco, J. M., & Reardon, K. F. (2013). Isolation and characterization of lignin-degrading bacteria from rainforest soils. Biotechnology and Bioengineering, 110, 1616–1626.

    Article  CAS  Google Scholar 

  17. Chang, Y. C., Choi, D., Takamizawa, K., & Kikuchi, S. (2014). Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Bioresource Technology, 152, 429–436.

    Article  CAS  Google Scholar 

  18. Bandounas, L., Wierckx, N. J., de Winde, J. H., & Ruijssenaars, H. J. (2011). Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnology, 11, 94.

    Article  CAS  Google Scholar 

  19. Teather, R. M., & Wood, P. J. (1982). Use of Congo red polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and Environmental Microbiology, 43, 777–780.

    CAS  Google Scholar 

  20. Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S., & Chun, J. (2012). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology, 62, 716–721.

    Article  CAS  Google Scholar 

  21. Bugg, T. D., Ahmad, M., Hardiman, E. M., & Singh, R. (2011). The emerging role for bacteria in lignin degradation and bio-product formation. Current Opinion in Biotechnology, 22, 394–400.

    Article  CAS  Google Scholar 

  22. Maki, M. L., Idrees, A., Leung, K. T., & Qin, W. (2012). Newly isolated and characterized bacteria with great application potential for decomposition of lignocellulosic biomass. Journal of Molecular Microbiology and Biotechnology, 22, 156–166.

    Article  CAS  Google Scholar 

  23. Xu, J., & Yang, Q. (2010). Isolation and characterization of rice straw degrading Streptomyces griseorubens C-5. Biodegradation, 21, 107–116.

    Article  CAS  Google Scholar 

  24. Deangelis, K. M., Sharma, D., Varney, R., Simmons, B., Isern, N. G., Markilllie, L. M., Nicora, C., Norbeck, A. D., Taylor, R. C., Aldrich, J. T., & Robinson, E. W. (2013). Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1. Frontiers in Microbiology, 4, 280.

    Article  Google Scholar 

  25. Roth, S., & Spiess, A. C. (2015). Laccases for biorefinery applications: a critical review on challenges and perspectives. Bioprocess and Biosystems Engineering, 38, 2285–2313.

    Article  CAS  Google Scholar 

  26. Latorre, J. D., Hernandez-Velasco, X., Kuttappan, V. A., Wolfenden, R. E., Vicente, J. L., Wolfenden, A. D., Bielke, L. R., Prado-Rebolledo, O. F., Morales, E., Hargis, B. M., & Tellez, G. (2015). Selection of Bacillus spp. for cellulase and xylanase production as direct-fed microbials to reduce digesta viscosity and Clostridium perfringens proliferation using an in vitro digestive model in different poultry diets. Frontiers in Veterinary Science, 2, 25.

    Article  Google Scholar 

  27. Min, K., Gong, G., Woo, H. M., Kim, Y., & Um, Y. (2015). A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and beta-ether lignin dimer. Scientific Reports, 5, 8245.

    Article  CAS  Google Scholar 

  28. Feng, H., Sun, Y., Zhi, Y., Mao, L., Luo, Y., Wei, X., & Zhou, P. (2015). Lignocellulose degradation by the isolate of Streptomyces griseorubens JSD-1. Functional & Integrative Genomics, 15, 163–173.

    Article  CAS  Google Scholar 

  29. Majumdar, S., Lukk, T., Solbiati, J. O., Bauer, S., Nair, S. K., Cronan, J. E., & Gerlt, J. A. (2014). Roles of small laccases from Streptomyces in lignin degradation. Biochemistry, 53, 4047–4058.

    Article  CAS  Google Scholar 

  30. Zeng, J., Singh, D., Laskar, D. D., & Chen, S. (2012). Degradation of native wheat straw lignin by Streptomyces viridosporus T7A. International journal of Environmental Science and Technology, 10, 165–174.

    Article  Google Scholar 

  31. Yabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, Y., Ezaki, T., & Arakawa, M. (1992). Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiology and Immunology, 36, 1251–1275.

    Article  CAS  Google Scholar 

  32. Woo, H. L., Utturkar, S., Klingeman, D., Simmons, B. A., DeAngelis, K. M., Brown, S. D., & Hazen, T. C. (2014). Draft genome sequence of the lignin-degrading Burkholderia sp. strain LIG30, isolated from wet tropical forest soil. Genome Announcements, 2, e00637–e00614.

    Article  Google Scholar 

  33. Akita, H., Kimura, Z., Mohd Yusoff, M. Z., Nakashima, N., & Hoshino, T. (2016). Isolation and characterization of Burkholderia sp. strain CCA53 exhibiting ligninolytic potential. SpringerPlus, 5, 596.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tai Hyun Park or Youngsoon Um.

Ethics declarations

Funding

This research was supported by C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (Information & Communication Technology) & Future Planning (2016M3D3A1A01913249). The authors also appreciate the support from the Korea Institute of Energy Technology Evaluation and Planning (Project No. 20143010091880).

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 761 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, G., Lee, SM., Woo, H.M. et al. Influences of Media Compositions on Characteristics of Isolated Bacteria Exhibiting Lignocellulolytic Activities from Various Environmental Sites. Appl Biochem Biotechnol 183, 931–942 (2017). https://doi.org/10.1007/s12010-017-2474-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2474-8

Keywords

Navigation