Skip to main content
Log in

Influence of Randomly Inserted Feruloyl Esterase A on β-Glucosidase Activity in Trichoderma reesei

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

As a well-known industrial fungus for cellulase production, the strain RUT-C30 of Trichoderma reesei was selected to produce the feruloyl esterase A (FAEA) by a random integration protocol. The strong promoter of cellobiohydrolase 1 (cbh1) gene was used to drive the expression of FAEA. Using double-joint PCR protocol, Pcbh1-faeA-TtrpC expression cassette was successfully constructed and co-transformed into RUT C30 strain of T. reesei. One transformant with high feruloyl esterase yield (3.44 ± 0.16 IU/mL) was obtained through plate screening and named TrfaeA1. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of fermentation supernatant from transformant TrfaeA1 showed a distinct protein band appearing at the position of about 34 kDa, indicating that faeA gene has been successfully expressed in T. reesei. Compared with that in original RUT C30 strain, β-glucosidase production in transformant TrfaeA1 was significantly increased by about 86.4%, reaching 63.2 IU/mL due to the random insertion of faeA. Moreover, the total secretion protein and filter paper activities of the transformant TrfaeA1 were also improved by up to 5.5 and 4.3%, respectively. The present results indicated that the random insertion strategy could be an effective and feasible method to improve and optimize the cellulase system of filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Peterson, R., & Nevalarinen, H. (2012). Trichoderma reesei RUT C30—thirty years of strain improvement. Microbiology, 158, 58–68.

    Article  CAS  Google Scholar 

  2. Schmoll, M., & Kubicek, C. P. (2003). Regulation of Trichoderma cellulase formation: lessons in molecular biology from an industrial fungus. Acta Microbiologica et Immunologica Hungarica, 50, 125–145.

    Article  CAS  Google Scholar 

  3. Le Crom, S., Schackwitz, W., Pennacchio, L., Magnuson, J. K., Culley, D. E., Collett, J. R., et al. (2009). Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 106, 16151–16156.

    Article  CAS  Google Scholar 

  4. Bhatia, Y., Mishra, S., & Bisaria, V. S. (2002). Microbial beta-glucosidases: cloning, properties, and applications. Critical Reviews in Biotechnology, 22, 375–407.

    Article  CAS  Google Scholar 

  5. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  6. Zhang, Y. H., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and Bioengineering, 88, 797–824.

    Article  CAS  Google Scholar 

  7. Saloheimo, M., Kuja-Panula, J., Ylösmäki, E., et al. (2002). Enzymatic properties and intracellular localization of the novel Trichoderma reesei β-glucosidase BGLII (Cel1A). Applied and Environmental Microbiology, 68, 4546–4553.

    Article  CAS  Google Scholar 

  8. Zhang JW, Zhong YH, Zhao XN, Wang TH. (2010). Development of the cellulolytic fungus Trichoderma reesei strain with enhanced beta-glucosidase and filter paper activity using strong artifical cellobiohydrolase 1 promoter. Bioresour Technol, 101, 9815–9818. 

  9. Mikiko, N., Takanori, F., Yosuke, S., et al. (2012). A new Zn(II)2Cys(6)-type transcription factor BglR regulates β-glucosidase expression in Trichoderma reesei. Fungal Genetics and Biology, 49, 388–397.

    Article  Google Scholar 

  10. Santhanam, P. (2012). Random insertional mutagenesis in fungal genomes to identify virulence factors. Methods in Molecular Biology, 835, 509–517.

    Article  CAS  Google Scholar 

  11. Cai, Z., Li, G., Lin, C., et al. (2013). Identifying pathogenicity genes in the rubber tree anthracnose fungus Colletotrichum gloeosporioides through random insertional mutagenesis. Microbiological Research, 168, 340–350.

    Article  CAS  Google Scholar 

  12. Ma, L., Zhang, J., Zou, G., Wang, C., & Zhou, Z. (2011). Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a β-glucosidase gene from Penicillium decumbens. Enzyme Microb Tech, 49, 366–371.

    Article  CAS  Google Scholar 

  13. Nakazawa, H., Kawai, T., et al. (2011). Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus β-glucosidase 1 for efficient biomass conversion. Biotechnology and Bioengineering, 109, 92–99.

    Article  Google Scholar 

  14. Dashtban, M., & Qin, W. (2012). Overexpression of an exotic thermotolerant β-glucosidase in Trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw. Microbial Cell Factories, 11, 63.

    Article  CAS  Google Scholar 

  15. Xue, X. (2016). Revisiting overexpression of a heterologous β-glucosidase in Trichoderma reesei: fusion expression of the Neosartorya fischeri Bgl3A to cbh1 enhances the overall as well as individual cellulase activities. Microbial Cell Factories, 15, 1–13.

    Article  Google Scholar 

  16. Wong, D. W. (2006). Feruloyl esterase: a key enzyme in biomass degradation. Applied Biochemistry and Biotechnology, 133, 87–112.

    Article  CAS  Google Scholar 

  17. Kroon, P. A., Garcia-Conesa, M. T., Fillinghaim, I. J., et al. (1999). Release of ferulic acid dehydrodimers from plant cell walls by feruloyl esterases. Journal of the Science of Food and Agriculture, 79, 428–434.

    Article  CAS  Google Scholar 

  18. Penttilä, M., Nevalainen, H., Rättö, M., Salminen, E., & Knowles, J. (1987). A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene, 61, 155–164.

    Article  Google Scholar 

  19. Yu, J. H., Hamari, Z., Han, K. H., et al. (2004). Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genetics and Biology, 41, 973–981.

    Article  CAS  Google Scholar 

  20. Levasseur, A., Pagès, S., Fierobe, H.-P., et al. (2004). Design and production in Aspergillus niger of a chimeric protein associating a fungal feruloyl esterase and a clostridial dockerin domain. Applied and Environmental Microbiology, 70, 6984–6991.

    Article  CAS  Google Scholar 

  21. Hegde, S., Srinivas, P., & Muralikrishna, G. (2009). Single-step synthesis of 4-nitrophenyl ferulate for spectrophotometric assay of feruloyl esterases. Analytical Biochemistry, 387, 128–129.

    Article  CAS  Google Scholar 

  22. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  23. Murray, P., Aro, N., Collins, C., et al. (2004). Expression in Trichoderma reesei and characterisation of a thermostable family β-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Expression Purification, 38, 248–257.

    Article  CAS  Google Scholar 

  24. Faulds, C. B. (2010). What can feruloyl esterases do for us? Phytochemistry Reviews, 9, 121–132.

    Article  CAS  Google Scholar 

  25. de Vries, R. P., Michelsen, B., Poulsen, C. H., et al. (1997). The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Applied and Environmental Microbiology, 63, 4638–4644.

    Google Scholar 

  26. Record, E., Asther, M., Sigoillot, C., et al. (2003). Overproduction of the Aspergillus niger, feruloyl esterase for pulp bleaching application. Applied Microbiology and Biotechnology, 62, 349–355.

    Article  CAS  Google Scholar 

  27. Verdoes, J. C., van Diepeningen, A. D., Punt, P. J., et al. (1994). Evaluation of molecular and genetic approaches to generate glucoamylase overproducing strains of Aspergillus niger. Journal of Biotechnology, 36, 165–175.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from National Natural Science Foundation of China (Grant No. 31570118); S&T Plan Projects of Shandong Provincial Education Department (J10LC08); and Shandong Provincial Natural Science Foundation, China (Grant No. ZR2015CM029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QinZheng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Pan, Y., Yan, M. et al. Influence of Randomly Inserted Feruloyl Esterase A on β-Glucosidase Activity in Trichoderma reesei . Appl Biochem Biotechnol 183, 254–264 (2017). https://doi.org/10.1007/s12010-017-2442-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2442-3

Keywords

Navigation