Skip to main content
Log in

Enhanced Production of a Recombinant Multidomain Thermostable GH9 Processive Endo-1,4-β-Glucanase (CenC) from Ruminiclostridium thermocellum in a Mesophilic Host Through Various Cultivation and Induction Strategies

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Commonly, unintentional induction and inadvertently preparing medium for engineered Escherichia coli BL21 CodonPlus (DE3)-RIPL, give poor or variable yields of heterologous proteins. Therefore, to enhance the activity and production of an industrially relevant recombinant processive endo-1,4-β-glucanase (CenC) propagated in Escherichia coli BL21 CodonPlus(DE3)-RIPL through various cultivation and induction strategies. Investigation of various growth media and induction parameters revealed that high-cell-density and optimal CenC expression were obtained in ZYBM9 medium induced either with 0.5 mM IPTG/150 mM lactose, after 6 h induction at 37 °C; and before induction, bacterial cells were given heat shock (42 °C) for 1 h when culture density (OD600nm) reached at 0.6. Intracellular enzyme activity was enhanced by 6.67 and 3.20-fold in ZYBM9 and 3×ZYBM9 medium, respectively, under optimal conditions. Using YNG auto-induction medium, activity was 2.5-fold increased after 10 h incubation at 37 °C. Approximately similar results were obtained by transferring the optimized process at the bioreactor level. Results showed that the effective process strategy is essential to enhance recombinant bacterial cell mass and enzyme production from small to large-scale. To the best of our knowledge, this is the first ever report on enhanced production of thermostable processive endo-1,4-β-glucanase cloned from Ruminiclostridium thermocellum, which is a suitable candidate for industrial applications.

Flow Chart Summary of Enhanced Production of a Recombinant Multidomain Thermostable GH9 Processive Endo-1,4-β-glucanase from Ruminiclostridium thermocellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yennamalli, R. M., Rader, A. J., Kenny, A. J., Wolt, J. D., & Sen, T. Z. (2013). Endoglucanases: insights into thermostability for biofuel applications. Biotechnology for Biofuels, 6, 136.

    Article  CAS  Google Scholar 

  2. Hama, S., Nakano, K., Onodera, K., Nakamura, M., Noda, H., & Kondo, A. (2014). Saccharification behaviour of cellulose acetate during enzymatic processing for microbial ethanol production. Bioresource Technology, 157, 1–5.

    Article  CAS  Google Scholar 

  3. Várnai, A., Tang, C., Bengtsson, O., Atterton, A., Mathiesen, G., & Vincent, G. H. (2014). Expression of endoglucanases in Pichia pastoris under control of the GAP promoter. Microbial Cell Factories, 13(1), 57.

    Article  Google Scholar 

  4. Pereira, S. C., Maehara, L., Machado, C. M. M., & Farinas, C. S. (2015). 2G ethanol from the whole sugarcane lignocellulosic biomass. Biotechnology for Biofuels, 8, 44.

    Article  Google Scholar 

  5. Kuhad, R. C., Gupta, R., & Singh, A. (2011). Microbial cellulases and their industrial applications. Enzyme Res., 7, 2011–280696.

    Google Scholar 

  6. Liu, J., Liu, W., & Zhao, X. (2011). Cloning and functional characterization of a novel endo-β-1,4-glucanase gene from a soil-derived metagenomic library. App. Microbiol. Biotechnol., 89, 1083–1092.

    Article  CAS  Google Scholar 

  7. Haq, I. U., Muneer, B., Zahid, H., Khan, M., Afzal, S., Majeed, S., Akram, F., & Akmal, S. (2015a). Thermodynamic and saccharification analysis of cloned GH12 endo-1, 4-β-glucanase from Thermotoga petrophila in a mesophilic host. Protein & Peptide Letters, 22(9), 785–794.

    Article  Google Scholar 

  8. Gilad, R., Rabinovich, L., Yaron, S., Edward, A., Lamed, R., Gilbert, H. J., & Shoham, Y. (2003). CelI, a noncellulosomal family 9 enzyme from Clostridium thermocellum, is a processive endoglucanase that degrades crystalline cellulose. Journal of Bacteriology, 185(2), 391–398.

    Article  CAS  Google Scholar 

  9. Riederer, A., Takasuka, T. E., Makino, S., Stevenson, D. M., Bukhman, Y. V., Elsen, N. L., & Fox, B. G. (2011). Global gene expression patterns in Clostridium thermocellum as determined by microarray analysis of chemostat cultures on cellulose or cellobiose. Applied and Environmental Microbiology, 77(4), 1243–1253.

    Article  CAS  Google Scholar 

  10. Cheema, T. A., Jirajaroenrat, K., Sirinarumitr, T., & Rakshit, S. K. (2012). Isolation of a gene encoding a cellulolytic enzyme from swamp buffalo rumen metagenomes and its cloning and expression in Escherichia coli. Animal Biotechnology, 23(4), 261–277.

    Article  CAS  Google Scholar 

  11. Seidl, V., & Seiboth, B. (2010). Trichoderma reesei: genetic approaches to improving strain efficiency. Biofuels, 1(2), 343–354.

    Article  CAS  Google Scholar 

  12. Studier, F. W. (2005). Protein production by auto-induction in high-density shaking cultures. Protein Expression and Purification, 41(1), 207–234.

    Article  CAS  Google Scholar 

  13. Kilikian, B. V., Suarez, I. D., Liria, C. W., & Gombert, A. K. (2000). Process strategies to improve heterologous protein production in Escherchia coli under lactose and IPTG induction. Process Biochemistry, 35, 1019–1025.

    Article  CAS  Google Scholar 

  14. Yan, J., Zhao, S. F., Mao, Y. F., & Luo, Y. H. (2004). Effects of lactose as an inducer on expression of Helicobacter pylori rUreB and rHpaA, and Escherichia coli rLTKA63 and rLTB. World Journal of Gastroenterology, 10, 1755–1758.

    Article  CAS  Google Scholar 

  15. Basar, B., Shamzi, M. M., Rosfarizan, M., Puspaningsih, N. N. T., & Ariff, A. B. (2010). Enhanced production of thermophilic xylanase by recombinant Escherichia coli DH5α through optimization of medium and dissolved oxygen level. Int. J. Agri. Biol., 12, 321–328.

    CAS  Google Scholar 

  16. Su, L., Huang, Y., & Wu, J. (2015). Enhanced production of recombinant Escherichia coli glutamate decarboxylase through optimization of induction strategy and addition of pyridoxine. Bioresource Technology, 198, 63–69.

    Article  CAS  Google Scholar 

  17. Haq, I. U., Akram, F., Khan, M. A., Hussain, Z., Nawaz, A., Iqbal, K., & Shah, A. J. (2015b). CenC, a multidomain thermostable GH9 processive endoglucanase from Clostridium thermocellum: cloning, characterization and saccharification studies. World Journal of Microbiology and Biotechnology, 31(11), 1699–1710.

    Article  Google Scholar 

  18. Bradford, M. M. (1976). A dye binding assay for protein. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  19. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  20. Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology, 5, 172.

    Google Scholar 

  21. Mihasan, M., Ungureanu, E., & Artenie, V. (2007). Optimum parameters for overexpression of recombinant protein from tac promotors on auto-inducible medium. Romanian Biotechnological Letters., 12(6), 3473.

    CAS  Google Scholar 

  22. Ikram, N., Naz, S., Rajoka, M. I., Sadaf, S., & Akhtar, M. W. (2009). Enhanced production of subtilisin of Pyrococcus furiosus expressed in Escherichia coli using auto-inducing medium. African Journal of Biotechnology., 8(21), 5867–5872.

    Article  CAS  Google Scholar 

  23. Mayer, S., Junne, S., Ukkonen, K., Glazyrina, J., Glauche, F., Neubauer, P., & Vasala, A. (2014). Lactose autoinduction with enzymatic glucose release: characterization of the cultivation system in bioreactor. Protein Expression and Purification, 94, 67–72.

    Article  CAS  Google Scholar 

  24. Kataeva, I. A., Uversky, V. N., Brewer, J. M., Schubot, F., Rose, J. P., Wang, B. C., & Ljungdahl, L. G. (2004). Interactions between immunoglobulin-like and catalytic modules in Clostridium thermocellum cellulosomal cellobiohydrolase CbhA. Protein Engineering, 17(11), 759–769.

    Article  CAS  Google Scholar 

  25. Zafar, M., Ahmed, S., Khan, M. I., & Jamil, A. (2014). Recombinant expression and characterization of a novel endoglucanase from Bacillus subtilis in Escherichia coli. Molecular Biology Reports, 41, 3295–3302.

    Article  CAS  Google Scholar 

  26. Wei, K. S. C., Teoh, T. C., Koshy, P., Salmah, I., & Zainudin, A. (2015). Cloning, expression and characterization of the endoglucanase gene from Bacillus subtilis UMC7 isolated from the gut of the indigenous termite Macrotermes malaccensis in Escherichia coli. Electro. J. Biotechnol., 18, 103–109.

    Article  CAS  Google Scholar 

  27. Cheng, J., Wu, D., Chen, S., Chen, J., & Wu, J. (2011). High-level extracellular production of alpha-cyclodextrin glycosyltransferase with recombinant Escherichia coli BL21(DE3). Journal of Agricultural and Food Chemistry, 59, 3797–3802.

    Article  CAS  Google Scholar 

  28. Naz, S., Ikram, N., Rajoka, M. I., Sadaf, S., & Akhtar, M. W. (2010). Enhanced production and characterization of a β-glucosidase from Bacillus halodurans expressed in Escherichia coli. Biochemistry (Mosc), 75(4), 513–525.

    Article  CAS  Google Scholar 

  29. Xue, Y., Xianfei, S., & Jinjin, Y. (2009). Overexpression of β-glucosidase from Thermotoga maritima for the production of highly purified aglycone isoflavones from soy flour. World Journal of Microbiology and Biotechnology, 25(12), 2165–2172.

    Article  CAS  Google Scholar 

  30. Tran, T. T., Mamo, G., Mattiasson, B., & Kaul, H. R. (2010). A thermostable phytase from Bacillus sp. MD2: cloning, expression and high-level production in Escherichia coli. Journal of Industrial Microbiology & Biotechnology, 37(3), 279–287. doi:10.1007/s10295-009-0671-3.

    Article  CAS  Google Scholar 

  31. Bashir, H., Ahmed, N., Zafar, A. U., Khan, M. A., Tahir, S., Khan, M. I., Khan, F., & Husnain, T. (2015). Simple procedure applying lactose induction and one step purification for high yield production of rh cifn. Biotechnology and Applied Biochemistry. doi:10.1002/bab.1426.

    Google Scholar 

  32. Oganesyan, N., Ankoudinova, I., Kim, S. H., & Kim, R. (2007). Effect of osmotic stress and heat shock in recombinant protein overexpression and crystallization. Protein Expres. Purif., 52, 280–285.

    Article  CAS  Google Scholar 

  33. Ozturk, M. T., Akbulut, N., Ozturk, S. I., & Gumusel, F. (2013). Ligase independent cloning of amylase gene from a local Bacillus subtilis isolate and biochemical characterization of the purified enzyme. Applied Biochemistry and Biotechnology, 171, 263–278.

    Article  Google Scholar 

  34. Wen, Q., Ma, L., & Wang, X. (2006). Culture condition optimization of engineered E. coli BL21/pET-11c/hIL-2-mGM-CSF. Nan fang yi ke da xue xue bao = Journal of Southern Medical University, 26(4), 418–420 424.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant No. 27(54)/2007-DSA (P&D) from the Ministry of Science and Technology, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Akram.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haq, I.u., Akram, F. Enhanced Production of a Recombinant Multidomain Thermostable GH9 Processive Endo-1,4-β-Glucanase (CenC) from Ruminiclostridium thermocellum in a Mesophilic Host Through Various Cultivation and Induction Strategies. Appl Biochem Biotechnol 183, 171–188 (2017). https://doi.org/10.1007/s12010-017-2437-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2437-0

Keywords

Navigation